【題目】如圖,已知的兩頂點(diǎn)坐標(biāo),,圓的內(nèi)切圓,在邊,,上的切點(diǎn)分別為,,

(Ⅰ)求證:為定值,并求出動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)過的斜率不為零直線交曲線、兩點(diǎn),求證:為定值.

【答案】(Ⅰ)證明詳見解析,曲線的方程為;(Ⅱ)詳見解析.

【解析】

(Ⅰ)利用切線長相等可求得;根據(jù)橢圓定義可知?jiǎng)狱c(diǎn)的軌跡是以,為焦點(diǎn),長軸長為的橢圓(不含橢圓與軸的交點(diǎn)),進(jìn)而求得結(jié)果;

(Ⅱ)設(shè)的方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,利用弦長公式求得,根據(jù)平面向量數(shù)量積運(yùn)算求得,進(jìn)而求得.

(Ⅰ)由題意得:,,

,

,

動(dòng)點(diǎn)的軌跡是以,為焦點(diǎn),長軸長為的橢圓(不含橢圓與軸的交點(diǎn)),

設(shè)曲線方程為:

,解得:,又,,

曲線的方程為

(Ⅱ)證明:由(Ⅰ)得:,設(shè),,

直線的斜率不為零,可設(shè)的方程為,

聯(lián)立消去并整理得:,

,

,

,

,

,

綜上可得:為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年是中國傳統(tǒng)的農(nóng)歷“鼠年”,有人用3個(gè)圓構(gòu)成“卡通鼠”的形象,如圖:是圓的圓心,圓過坐標(biāo)原點(diǎn);點(diǎn)、均在軸上,圓與圓的半徑都等于2,圓均與圓外切.已知直線過點(diǎn)

1)若直線與圓、圓均相切,則截圓所得弦長為__________;

2)若直線截圓、圓、圓所得弦長均等于,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:


3

2

4




0

4


)求的標(biāo)準(zhǔn)方程;

)請(qǐng)問是否存在直線滿足條件:的焦點(diǎn)交不同兩點(diǎn)且滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知件次品和件正品混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)檢測(cè)結(jié)束.

1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;

2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年電子商務(wù)蓬勃發(fā)展,現(xiàn)從某電子商務(wù)平臺(tái)評(píng)價(jià)系統(tǒng)中隨機(jī)選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果顯示:網(wǎng)購者對(duì)商品的滿意率為0.70,對(duì)快遞的滿意率為0.60,其中對(duì)商品和快遞都滿意的交易為80次.

1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答在犯錯(cuò)誤的概率不超過0.10的前提下,能否認(rèn)為“網(wǎng)購者對(duì)商品滿意與對(duì)快遞滿意之間有關(guān)系”?

對(duì)快遞滿意

對(duì)快遞不滿意

合計(jì)

對(duì)商品滿意

80

對(duì)商品不滿意

合計(jì)

200

2)為進(jìn)一步提高購物者的滿意度,平臺(tái)按分層抽樣方法從200次交易中抽取10次交易進(jìn)行問卷調(diào)查,詳細(xì)了解滿意與否的具體原因,并在這10次交易中再隨機(jī)抽取2次進(jìn)行電話回訪,聽取購物者意見.求電話回訪的2次交易至少有一次對(duì)商品和快遞都滿意的概率.

附:(其中為樣本容量)

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),,C的左、右焦點(diǎn),過的直線lC交于A,B兩點(diǎn),且的周長為

1)求C的方程;

2)若,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人投籃的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲與乙的命中率之和.若甲與乙各投籃一次,每人投籃相互獨(dú)立,則他們都命中的概率為0.18.

1)求甲、乙、丙三人投籃的命中率;

2)現(xiàn)要求甲、乙、丙三人各投籃一次,假設(shè)每人投籃相互獨(dú)立,記三人命中總次數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的頂點(diǎn),,且、、成等差數(shù)列.

1)求的頂點(diǎn)的軌跡方程;

2)直線與頂點(diǎn)的軌跡交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在直線上時(shí),試問:線段的垂直平分線是否恒過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為

(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程;

(Ⅱ)點(diǎn)M為曲線C上一點(diǎn),求M到直線l的最小距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案