6.如圖所示,在四棱錐P-ABCD中,G為AD的中點(diǎn),側(cè)面PAD⊥底面ABCD.底面ABCD是邊長(zhǎng)為a的菱形,且∠D A B=60°,側(cè)面PAD為正三角形.求證:AD⊥平面PGB.

分析 連結(jié)PG,證明AD垂直平面PGB內(nèi)的兩條相交直線BG,PG即可.

解答 證明:連結(jié)PG,∵在菱形ABCD中,∠DAB=60°,G為AD的中點(diǎn),得BG⊥AD.
∵△PAD為正三角形,G為AD的中點(diǎn),得PG⊥AD.
又∵PG∩BG=G,PG?平面PGB,BG?平面PGB,
∴AD⊥平面PGB.

點(diǎn)評(píng) 本題考查了線面垂直的判定,關(guān)鍵是判定線線垂直,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.某校為了解本校高三學(xué)生學(xué)習(xí)的心理狀態(tài),采用系統(tǒng)抽樣方法從1200人中抽取40人參加某種測(cè)試,為此將他們隨機(jī)編號(hào)為1,2,…,1200,分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為28,抽到的40人中,編號(hào)落在區(qū)間[1,300]的人做試卷A,編號(hào)落在[301,760]的人做試卷B,其余的人做試卷C,則做試卷C的人數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某學(xué)校數(shù)學(xué)興趣班共有14人,分為兩個(gè)小組,在一次階段考試中兩個(gè)小組成績(jī)的莖葉圖如圖所示,其中甲組學(xué)生成績(jī)的平均數(shù)是88,乙組學(xué)生成績(jī)的中位數(shù)是89,則m+n的值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線為$y=-\sqrt{2}x$,且一個(gè)焦點(diǎn)是拋物線y2=12x的焦點(diǎn),則該雙曲線的方程為( 。
A.$\frac{y^2}{3}-\frac{x^2}{6}=1$B.$\frac{x^2}{3}-\frac{y^2}{6}=1$C.$\frac{x^2}{6}-\frac{y^2}{3}=1$D.$\frac{y^2}{6}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.判斷圓x2+y2-2x-3=0和x2+y2-4y+3=0的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.方程x2+y2-2x-4y+6=0表示的軌跡為(  )
A.圓心為(1,2)的圓B.圓心為(2,1)的圓C.圓心為(-1,-2)的圓D.不表示任何圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.中心在原點(diǎn),焦點(diǎn)在x軸上,焦距等于12,離心率等于$\frac{3}{5}$,則此橢圓的方程是(  )
A.$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1B.$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列在曲線$\left\{\begin{array}{l}x=cosθ+sinθ\\ y=sin2θ\end{array}$(θ為參數(shù))上的點(diǎn)是( 。
A.$(\frac{1}{2},-\sqrt{2})$B.$(2,\sqrt{3})$C.$(\sqrt{2},1)$D.$(1,\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在某化學(xué)反應(yīng)的中間階段,壓力保持不變,溫度從1°變化到5°,反應(yīng)結(jié)果如下表所示(x代表溫度,y代表結(jié)果):
x12345
y3571011
(1)求化學(xué)反應(yīng)的結(jié)果y對(duì)溫度x的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān),并預(yù)測(cè)當(dāng)溫度達(dá)到10°時(shí)反應(yīng)結(jié)果為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案