【題目】如圖,在四棱錐中,底面是邊長為的菱形,, 平面,,,為的中點.
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)判斷直線與平面的位置關(guān)系,請說明理由.
【答案】(1)證明見解析;(2);(3)相交,理由見解析.
【解析】
(1)根據(jù)題意先證明平面,即可得到答案;
(2)以為坐標(biāo)原點,以為軸,以為軸,以過點且與平行的直線為軸,
建立空間直角坐標(biāo)系,求出、的坐標(biāo),利用公式即可得到結(jié)果;
(3)求出平面的一個法向量與向量,根據(jù)與零的關(guān)系,作出判斷.
(1)連結(jié).
因為底面是菱形 ,所以.
又因為平面,平面,
所以.
又因為,
所以平面.
又因為平面,
所以.
(2)設(shè),交于點.
因為底面是菱形 ,
所以,
又因為平面,
所以,.
如圖,以為坐標(biāo)原點,以為軸,以為軸,以過點且與平行的直線為軸,
建立空間直角坐標(biāo)系,
則,,,, , ,.
則,,
設(shè)異面直線與所成角為,則,
,
所以與所成角的余弦值為.
(3)直線與平面相交.證明如下:
由(2)可知,,,,
設(shè)平面的一個法向量為,
則 即 令,得.
則,
所以直線與平面相交.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.設(shè)m為實數(shù),若方程表示雙曲線,則m>2.
B.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件
C.命題“x∈R,使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3>0”
D.命題“若x0為y=f(x)的極值點,則f’(x)=0”的逆命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,分別為內(nèi)角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.
(1)滿足有解三角形的序號組合有哪些?
(2)在(1)所有組合中任選一組,并求對應(yīng)的面積.
(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)能減排,發(fā)展低碳經(jīng)濟,我國政府從2001年起就通過相關(guān)政策推動新能源汽車產(chǎn)業(yè)發(fā)展.下面的圖表反映了該產(chǎn)業(yè)發(fā)展的相關(guān)信息:
中國新能源汽車產(chǎn)銷情況一覽表 | ||||
新能源汽車生產(chǎn)情況 | 新能源汽車銷售情況 | |||
產(chǎn)品(萬輛) | 比上年同期 | 銷量(萬輛) | 比上年同期 | |
2018年3月 | 6.8 | 105 | 6.8 | 117.4 |
4月 | 8.1 | 117.7 | 8.2 | 138.4 |
5月 | 9.6 | 85.6 | 10.2 | 125.6 |
6月 | 8.6 | 31.7 | 8.4 | 42.9 |
7月 | 9 | 53.6 | 8.4 | 47.7 |
8月 | 9.9 | 39 | 10.1 | 49.5 |
9月 | 12.7 | 64.4 | 12.1 | 54.8 |
10月 | 14.6 | 58.1 | 13.8 | 51 |
11月 | 17.3 | 36.9 | 16.9 | 37.6 |
1-12月 | 127 | 59.9 | 125.6 | 61.7 |
2019年1月 | 9.1 | 113 | 9.6 | 138 |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |
根據(jù)上述圖表信息,下列結(jié)論錯誤的是( )
A.2017年3月份我國新能源汽車的產(chǎn)量不超過萬輛
B.2017年我國新能源汽車總銷量超過萬輛
C.2018年8月份我國新能源汽車的銷量高于產(chǎn)量
D.2019年1月份我國插電式混合動力汽車的銷量低于萬輛
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點,傾斜角為,在以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于兩點,設(shè)點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貧困縣在政府“精準(zhǔn)扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)茶業(yè).該縣農(nóng)科所為了對比A,B兩種不同品種茶葉的產(chǎn)量,在試驗田上分別種植了A,B兩種茶葉各畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:
A:,,,,,,,,,,,,,,,,,,,;
B:,,,,,,,,,,,,,,,,,,,;
(1)從A,B兩種茶葉畝產(chǎn)數(shù)據(jù)中各任取1個,求這兩個數(shù)據(jù)都不低于的概率;
(2)從B品種茶葉的畝產(chǎn)數(shù)據(jù)中任取個,記這兩個數(shù)據(jù)中不低于的個數(shù)為,求的分布列及數(shù)學(xué)期望;
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為選擇該縣應(yīng)種植茶葉A還是茶葉B?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com