數(shù)列{an} 的前n 項(xiàng)和為Sn=n2,則其通項(xiàng)an=
2n-1
2n-1
分析:根據(jù)數(shù)列{an}的前n項(xiàng)和Sn,表示出數(shù)列{an}的前n-1項(xiàng)和Sn-1,兩式相減即可求出此數(shù)列的通項(xiàng)公式,然后檢驗(yàn)n=1是否滿足,求出的an即為通項(xiàng)公式.
解答:解:當(dāng)n=1時(shí),S1=12=1,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-(n-1)2=2n-1,
又n=1時(shí),a1=2-1=1,滿足通項(xiàng)公式,
∴此數(shù)列通項(xiàng)公式為an=2n-1,
故答案為:2n-1.
點(diǎn)評(píng):此題考查了等差數(shù)列的通項(xiàng)公式,靈活運(yùn)用an=Sn-Sn-1求出數(shù)列的通項(xiàng)公式.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)證明:數(shù)列{an-n}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn,并證明:不等式Sn+1≤4Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=px2+qx(p≠0),其導(dǎo)函數(shù)為f'(x)=6x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=
13
(an+2),2b1+22b2+23b3+…+2nbn=cn
,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,an+1=2Sn+2(n∈N*),
(1)求a2以及數(shù)列{an}的通項(xiàng)公式;
(2)在an與an+1之間插入n個(gè)數(shù),使這n個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列.
(。┣笞C:
1
d1
+
1
d2
+
1
d3
+…+
1
dn
15
16
(n∈N*);
(ⅱ)求證:在數(shù)列{dn}中不存在三項(xiàng)dm,ds,dt成等比數(shù)列.(其中m,s,t依次成等比數(shù)列)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和公式為Sn=log3(n+1),則a5等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
2
1
3
,
2
3
,
1
4
2
4
,
3
4
,
1
5
,
2
5
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運(yùn)算和結(jié)論:
①a24=
3
8
;
②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案