已知函數(shù)為偶函數(shù).
(Ⅰ) 求的值;
(Ⅱ) 若方程有且只有一個根, 求實數(shù)的取值范圍.
(Ⅰ);(Ⅱ) 或.
解析試題分析:(Ⅰ)為偶函數(shù),所以. 將此等式化簡整理便可得的值.
(Ⅱ)首先將方程化簡:
因為.
∴由得.
令 ,則*變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/12/2/1nok74.png" style="vertical-align:middle;" />.下面對進行討論,考察這個方程的根的情況.
試題解析:(Ⅰ)因為為偶函數(shù),所以.
即,∴.
∴,∴
(Ⅱ)依題意知: .
∴由得.
令 ,則①變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/12/2/1nok74.png" style="vertical-align:middle;" />.
(1) 不合題意 .
(2)①式有一正一負根, 經(jīng)驗證滿足.
(3)兩相等正根, 經(jīng)驗證 .
綜上得:或.
考點:1、函數(shù)的奇偶性;2、指數(shù)函數(shù)與對數(shù)函數(shù);3、二次方程.
科目:高中數(shù)學 來源: 題型:解答題
某地開發(fā)了一個旅游景點,第1年的游客約為100萬人,第2年的游客約為120萬人.某數(shù)學興趣小組綜合各種因素預測:①該景點每年的游客人數(shù)會逐年增加;②該景點每年的游客都達不到130萬人.該興趣小組想找一個函數(shù)來擬合該景點對外開放的第年與當年的游客人數(shù)(單位:萬人)之間的關系.
(1)根據(jù)上述兩點預測,請用數(shù)學語言描述函數(shù)所具有的性質(zhì);
(2)若=,試確定的值,并考察該函數(shù)是否符合上述兩點預測;
(3)若=,欲使得該函數(shù)符合上述兩點預測,試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設定義域為的函數(shù)(為實數(shù))。
(1)若是奇函數(shù),求的值;
(2)當是奇函數(shù)時,證明對任何實數(shù)都有成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)若x=時,取得極值,求的值;
(2)若在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)設,當=-1時,證明在其定義域內(nèi)恒成立,并證明().
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com