設(shè)數(shù)列滿(mǎn)足,,,
(1)證明:,);
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,求證:
(1),兩式相乘得,為常數(shù)列,; ;
(2);(3)由可以知道,,
.又,故,
所以

試題分析:(1),兩式相乘得,為常數(shù)列,;(2分)

(若,則,從而可得為常數(shù)列與矛盾);     4分
(2),

又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002558874342.png" style="vertical-align:middle;" />,為等比數(shù)列,       8分
(3)由可以知道,,
,數(shù)列的前項(xiàng)和為,很顯然只要證明,

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002559155737.png" style="vertical-align:middle;" />,

所以

所以.       14分
,故
所以.            16分
點(diǎn)評(píng):本題考查不等式的證明和數(shù)列的通項(xiàng)公式的求法,綜合性強(qiáng),難度大,是高考重點(diǎn),解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若數(shù)列是等差數(shù)列,且,則數(shù)列的前項(xiàng)和等于
A.B.18C.27D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為,為其前項(xiàng)和,且滿(mǎn)足,.?dāng)?shù)列滿(mǎn)足,為數(shù)列的前n項(xiàng)和.
(Ⅰ)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和
(Ⅱ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和和通項(xiàng)滿(mǎn)足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ) 求證:;
(Ⅲ)設(shè)函數(shù),,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列中,a3+a11="8," 數(shù)列是等比數(shù)列,且b7=a7,則b6b8的值為
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義數(shù)列,(例如時(shí),)滿(mǎn)足,且當(dāng))時(shí),.令
(1)寫(xiě)出數(shù)列的所有可能的情況;(5分)
(2)設(shè),求(用的代數(shù)式來(lái)表示);(5分)
(3)求的最大值.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
已知數(shù)列{an}的首項(xiàng)a1=" t" >0,,n=1,2,……
(1)若t =,求是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)若對(duì)一切都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為等差數(shù)列,,則等于(   )
A.10B.20C.40D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)數(shù)列的前項(xiàng)和為,,等差數(shù)列滿(mǎn)足,
(I)分別求數(shù)列的通項(xiàng)公式;
(II)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案