設f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當0≤x≤1時,f(x)=x.
(1)求f(π)的值; 
(2)當-4≤x≤4時,求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內函數(shù)f(x)的單調區(qū)間.

(1)π-4.
(2)4
(3)遞增區(qū)間為[4k-1,4k+1](k∈Z),單調遞減區(qū)間[4k+1,4k+3](k∈Z)

解析試題分析:解:(1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4為周期的周期函數(shù),
∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函數(shù)與f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).
故知函數(shù)y=f(x)的圖象關于直線x=1對稱.
又0≤x≤1時,f(x)=x,且f(x)的圖象關于原點成中心對稱,則f(x)的圖象如圖所示.

當-4≤x≤4時,f(x)的圖象與x軸圍成的圖形面積為S,則
S=4SOAB=4×=4.
(3)根據(jù)(1)(2)可知函數(shù)的圖形,根據(jù)奇偶性以及解析式和對稱中心可知,

在一個周期[-1,3]內的圖象可知增區(qū)間為[-1,1],減區(qū)間為[1,3],那么推廣到整個實數(shù)域可知,都加上周期的整數(shù)倍即可,故可知函數(shù)f(x)的單調遞增區(qū)間為[4k-1,4k+1](k∈Z),單調遞減區(qū)間[4k+1,4k+3](k∈Z)
考點:函數(shù)圖象與性質
點評:主要是考查了函數(shù)的圖象與性質的綜合運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù), .
(1)若, 函數(shù) 在其定義域是增函數(shù),求的取值范圍;
(2)在(1)的結論下,設函數(shù)的最小值;
(3)設函數(shù)的圖象與函數(shù)的圖象交于點,過線段的中點軸的垂線分別交、于點、,問是否存在點,使處的切線與處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知函數(shù)為有理數(shù)且),求函數(shù)的最小值;
(2)①試用(1)的結果證明命題:設為有理數(shù)且,若時,則;
②請將命題推廣到一般形式,并證明你的結論;
注:當為正有理數(shù)時,有求導公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),證明:
(Ⅰ)對每個,存在唯一的,滿足;
(Ⅱ)對任意,由(Ⅰ)中構成的數(shù)列滿足.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為,若上為增函數(shù),則稱 為“一階比增函數(shù)”.
(Ⅰ) 若是“一階比增函數(shù)”,求實數(shù)的取值范圍;
(Ⅱ) 若是“一階比增函數(shù)”,求證:;
(Ⅲ)若是“一階比增函數(shù)”,且有零點,求證:有解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在點處的切線方程為,且對任意的,恒成立.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求實數(shù)的最小值;
(Ⅲ)求證:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,函數(shù),其中是自然對數(shù)的底數(shù)。
(1)判斷在R上的單調性;
(2)當時,求上的最值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設f(x)=log)為奇函數(shù),a為常數(shù).
(Ⅰ)求a的值;
(Ⅱ)證明f(x)在(1,+∞)內單調遞增;
(Ⅲ)若對于[3,4]上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知為自然對數(shù)的底數(shù)).
(Ⅰ)求的極值;
(Ⅱ)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案