命題:“設(shè)a、b、c∈R,若ac2>bc2,則a>b”以及它的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

類比平面幾何中的定理“設(shè)a,b,c是三條直線,若a⊥c,b⊥c,則a∥b”,得出如下結(jié)論:
①設(shè)a,b,c是空間的三條直線,若a⊥c,b⊥c,則a∥b;
②設(shè)a,b是兩條直線,α是平面,若a⊥α,b⊥α,則a∥b;
③設(shè)α,β是兩個(gè)平面,m是直線,若m⊥α,m⊥β,則α∥β;
④設(shè)α,β,γ是三個(gè)平面,若α⊥γ,β⊥γ,則α∥β;
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
,
c
是任意的非零向量,且相互不共線,下列命題:
(1)(
a
b
)
c
-(
c
a
)
b
=
0
,
(2)|
a
|-|
b
|<|
a
-
b
|
,
(3)(
b
c
)
a
-(
a
c
)
b
不與
c
垂直,
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2

其中正確的命題有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
c
是任意的非零向量,且相互不共線,有下列命題:
(1)(
a
b
c
-(
c
a
b
=0;
(2)|
a
|-|
b
|<|
a
-
b
|;
(3)(
b
c
a
-(
a
c
b
不與
c
垂直;
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2
其中,是真命題的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A選修1-1) 2009-2010學(xué)年 第16期 總第172期 人教課標(biāo)版(A選修1-1) 題型:013

若命題p:x0∈{x|x∈Z},log2x0<0;命題q:設(shè)a、b、c分別是△ABC中∠A、∠B、∠C所對(duì)的邊長(zhǎng),則直線sinA·x+ay+c=0與bx-sinB·y+sinC=0的位置關(guān)系是垂直.則

[  ]
A.

p真q假

B.

“p∧q”為假

C.

“p∨q”為假

D.

假q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A選修2-1) 2009-2010學(xué)年 第16期 總第172期 人教課標(biāo)版(A選修2-1) 題型:013

若命題;命題q:設(shè)a、b、c分別是△ABC中∠A、∠B、∠C所對(duì)的邊長(zhǎng),則直線sinA·x+ay+c=0與bx-sinB·y+sinC=0的位置關(guān)系是垂直.則

[  ]
A.

p真q假

B.

“p∧q”為假

C.

“p∨q”為假

D.

假q真

查看答案和解析>>

同步練習(xí)冊(cè)答案