(1)化簡:;
(2)已知:,求的值.
(1);(2).
解析試題分析:本題主要考查同角三角函數(shù)基本關(guān)系式與誘導(dǎo)公式的應(yīng)用.(1)將分子中的變形為,從而分子進(jìn)一步化簡為,分母利用誘導(dǎo)公式與同角三角函數(shù)的基本關(guān)系式轉(zhuǎn)化為,最后不難得到答案;(2)先利用誘導(dǎo)公式化簡三角函數(shù),然后分子分母同時(shí)除以,將式子轉(zhuǎn)化為關(guān)于的代數(shù)式,代入數(shù)值即可得到答案.
試題解析:(Ⅰ)原式=== 6分
(Ⅱ)解:原式== 6分
考點(diǎn):1.同角三角函數(shù)的基本關(guān)系式;2.三角恒等變換;3.誘導(dǎo)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的最小正周期;
(2)若將的圖象向右平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值,并求出相應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求值;
(Ⅱ)若存在區(qū)間(且),使得在上至少含有6個(gè)零
點(diǎn),在滿足上述條件的中,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的最大值;
(2)若直線是函數(shù)的對稱軸,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)(A>0,>0)的最小值為-1,其圖象相鄰兩個(gè)對稱中心之間的距離為.
(1)求函數(shù)的解析式
(2)設(shè),則,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知0<α<,β為f(x)=cos的最小正周期,a=,b=(cos α,2),且a·b=m,求的值.2cos2α+sin 2?α+β?cos α-sin α
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com