【題目】如圖,四棱錐的底面是菱形,,平面,的中點(diǎn).

(1)求證:平面平面;

(2)棱上是否存在一點(diǎn),使得平面?若存在,確定的位置并加以證明;若不存在,請說明理由.

【答案】(1)見解析(2) 點(diǎn)的中點(diǎn)

【解析】試題分析:(1)證面面垂直,可先由線面垂直入手即,進(jìn)而得到面面垂直;(2)通過構(gòu)造平行四邊形,得到線面平行。

解析:

(1)連接,因?yàn)榈酌?/span>是菱形,,所以為正三角形.

因?yàn)?/span>的中點(diǎn), 所以,

因?yàn)?/span>,,∴

因?yàn)?/span>,,,

所以.

, 所以面⊥面.

(2)當(dāng)點(diǎn)的中點(diǎn)時(shí),∥面.

事實(shí)上,取的中點(diǎn),的中點(diǎn),連結(jié),,

為三角形的中位線,

又在菱形中,的中點(diǎn),

,

所以四邊形為平行四邊形.

所以 ,

,

∥面,結(jié)論得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2 ,E,F(xiàn)分別是AD,PC的中點(diǎn).

(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,E是棱CC1上的動(dòng)點(diǎn),F(xiàn)是AB的中點(diǎn),AC=BC=2,AA1=4.

(1)當(dāng)E是棱CC1的中點(diǎn)時(shí),求證:CF∥平面AEB1;
(2)在棱CC1上是否存在點(diǎn)E,使得二面角A﹣EB1﹣B的大小是45°?若存在,求出CE的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BCAC=BC=,OM分別為AB,VA的中點(diǎn).

1)求證:VB∥平面MOC;

2)求證:平面MOC⊥平面VAB

3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=

(Ⅰ)證明:AC⊥平面BCDE;
(Ⅱ)求直線AE與平面ABC所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖動(dòng)直線l:y=b與拋物線y2=4x交于點(diǎn)A,與橢圓 =1交于拋物線右側(cè)的點(diǎn)B,F(xiàn)為拋物線的焦點(diǎn),則|AF|+|BF|+|AB|的最大值為( )

A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四棱錐E﹣ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC.

(Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體的棱長為1,線段上有兩個(gè)動(dòng)點(diǎn),,則下列結(jié)論中正確的是__________

平面

②平面平面;

③三棱錐的體積為定值;

④存在某個(gè)位置使得異面直線成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值為3,f(x)的圖象在y軸上的截距為2,其相鄰兩對稱軸間的距離為1,則f(1)+f(2)+f(3)+…+f(100)=(  )
A.0
B.100
C.150
D.200

查看答案和解析>>

同步練習(xí)冊答案