【題目】若一個(gè)四棱錐底面為正方形,頂點(diǎn)在底面的射影為正方形的中心,且該四棱錐的體積為9,當(dāng)其外接球表面積最小時(shí),它的高為(
A.3
B.2
C.2
D.3

【答案】A
【解析】解:設(shè)底面邊長AB=a,棱錐的高SM=h, ∵V棱錐SABCD= a2h=9,
∴a2= ,
∵正四棱錐內(nèi)接于球O,
∴O在直線SM上,設(shè)球O半徑為R,
(i)若O在線段SM上,如圖一,則OM=SM﹣SO=h﹣R,

(ii)若O在在線段SM的延長線上,如圖二,

則OM=SO﹣SM=R﹣h,
∵SM⊥平面ABCD,
∴△OMB是直角三角形,
∴OM2+MB2=OB2 ,
∵OB=R,MB= BD= a,
∴(h﹣R)2+ =R2 , 或(R﹣h)2+ =R2
∴2hR=h2+ ,
即R= + = + = ≥3 =
當(dāng)且僅當(dāng) = 取等號,
即h=3時(shí)R取得最小值
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的棱錐的結(jié)構(gòu)特征,需要了解側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是正項(xiàng)數(shù)列的前項(xiàng)和,且.

(Ⅰ)求數(shù)列通項(xiàng)公式;

(Ⅱ)是否存在等比數(shù)列,使對一切正整數(shù)都成立?并證明你的結(jié)論.

(Ⅲ)設(shè)),且數(shù)列的前項(xiàng)和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知下列條件解三角形:
①A=60°,a= ,b=1;
②A=30°,a=1,b=2;
③A=30°,c=10,a=6;
④A=30°,c=10,a=5,
其中有唯一解的序號為( )
A.①②③
B.①②④
C.②③④
D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,其中為自然對數(shù)的底數(shù),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)既有極大值,又有極小值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2)

1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ–3σ,μ+3σ)之外的零件數(shù),求P(X1)X的數(shù)學(xué)期望;

2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ–3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;

)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得,,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,,16

用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,利用估計(jì)值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μσ(精確到0.01).

附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ–3σ<Z<μ+3σ)=0.997 40.997 4160.959 2,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問題:

(1)能否出現(xiàn)ACBC的情況?說明理由;

(2)證明過A,B,C三點(diǎn)的圓在y軸上截得的弦長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC=
(1)求證:平面PAD⊥平面PCD;
(2)試在棱PB上確定一點(diǎn)E,使截面AEC把該幾何體分成的兩部分PDCEA與EACB的體積比為2:1;
(3)在(2)的條件下,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)為何值時(shí), 軸為曲線的切線;

(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案