設(shè)f(x)=
e|x|-sinx+1e|x|+1
在[-m,m](m>0)上的最大值為p,最小值為q,則p+q=
2
2
分析:令g(x)=f(x)-1,易判斷g(x)為奇函數(shù),利用奇函數(shù)的性質(zhì)可求得g(x)最大值與最小值的和,從而可得f(x)的最大值與最小值的和.
解答:解:f(x)=1-
sinx
e|x|+1
,令g(x)=f(x)-1=-
sinx
e|x|+1
,x∈[-m,m](m>0),
g(-x)=-
sin(-x)
e|x|+1
=
sinx
e|x|+1
=-g(x),所以g(x)為奇函數(shù).
當(dāng)x∈[-m,m]時(shí),設(shè)g(x)max=g(x0),即[f(x)-1]max=g(x0),所以f(x)max=1+g(x0);
又g(x)是奇函數(shù),所以g(x)min=-g(x0),即[f(x)-1]min=-g(x0),所以f(x)min=1-g(x0),
所以p+q=[1+g(x0)]+[1-g(x0)]=2.
故答案為:2.
點(diǎn)評(píng):本題考查了閉區(qū)間上函數(shù)的最值、函數(shù)的奇偶性,解決本題的關(guān)鍵是根據(jù)函數(shù)特點(diǎn)恰當(dāng)構(gòu)造函數(shù),充分利用函數(shù)性質(zhì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈(0,e]時(shí),f(x)=ax+lnx(其中e是自然界對(duì)數(shù)的底,a∈R)
(1)求f(x)的解析式;
(2)設(shè)g(x)=
ln|x|
|x|
,x∈[-e,0)
,求證:當(dāng)a=-1時(shí),f(x)>g(x)+
1
2

(3)是否存在實(shí)數(shù)a,使得當(dāng)x∈[-e,0)時(shí),f(x)的最小值是3?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)=
e|x|-sinx+1
e|x|+1
在[-m,m](m>0)上的最大值為p,最小值為q,則p+q=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)a∈R,函數(shù)f(x)=e-x(x2+ax+1),其中e是自然對(duì)數(shù)的底數(shù).

(1)討論函數(shù)f(x)在R上的單調(diào)性;

(2)當(dāng)-1<a<0時(shí),求f(x)在[-2,1]上的最小值.

(文)已知f(x)=x3+mx2-2m2x-4(m為常數(shù),且m>0)有極大值.

(1)求m的值;

(2)求曲線y=f(x)的斜率為2的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=xlnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;

(2)當(dāng)b>0時(shí),求證:bb(其中e=2.718 28…是自然對(duì)數(shù)的底數(shù));

(3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).

(1)求和c的值.

(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示).

(3)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案