分析 由題意把A、B、C、P擴(kuò)展為三棱柱如圖,求出上下底面中心連線的中點(diǎn)與A的距離為球的半徑,然后求出球的表面積.
解答 解:由題意畫出幾何體的圖形如圖,
把A、B、C、P擴(kuò)展為三棱柱,
上下底面中心連線的中點(diǎn)與A的距離為球的半徑,
PA=2BC=4,OE=2,△ABC是正三角形,∴AB=2,
∴AE=$\frac{4\sqrt{3}}{3}$.
AO=$\sqrt{(\frac{4\sqrt{3}}{3})^{2}+{2}^{2}}$=$\sqrt{\frac{28}{3}}$.
所求球的表面積為:4π($\sqrt{\frac{28}{3}}$)2=$\frac{112}{3}$π.
故答案為:$\frac{112}{3}$π.
點(diǎn)評 本題考查球的內(nèi)接體與球的關(guān)系,考查空間想象能力,利用割補(bǔ)法結(jié)合球內(nèi)接多面體的幾何特征求出球的半徑是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{14}$ | B. | $\sqrt{14}$ | C. | $\sqrt{26}$ | D. | -$\sqrt{26}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
贊成禁放 | 不贊成禁放 | 合計(jì) | |
老年人 | 60 | 140 | 200 |
中青年人 | 80 | 120 | 200 |
合計(jì) | 140 | 260 | 400 |
P(k2>k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com