20.已知函數(shù)f(x)的導函數(shù)f′(x)的圖象如圖,下列說法正確的是④ (只填序號)
①函數(shù)f(x)在x=1處取得極小值-1
②函數(shù)f(x)在x=0和x=1處取得極值
③函數(shù)f(x)在(-∞,1)上是單調(diào)遞減函數(shù),在(1,+∞)上是單調(diào)遞增函數(shù)
④函數(shù)f(x)在(-∞,0)和(2,+∞)上是單調(diào)遞增函數(shù),在(0,2)上是單調(diào)遞減函數(shù)
⑤函數(shù)f(x)在x=0處取得極小值,在x=2處取得極大值.

分析 結合圖象求出函數(shù)的單調(diào)區(qū)間,從而判斷出函數(shù)的極值,求出正確答案即可.

解答 解:由題意得:f(x)在(-∞,0)遞增,在(0,2)遞減,在(2,+∞),
函數(shù)f(x)在x=0處取極大值,在x=2處取極小值,故①②③⑤錯誤,④正確,
故答案為:④.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導數(shù)的應用以及數(shù)形結合思想,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.用數(shù)學歸納法證明:12+32+52+…+(2n-1)2=$\frac{1}{3}$n(4n2-1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}是首項為a,公差為b的等差數(shù)列,數(shù)列{bn}是首項為b,公比為a的等比數(shù)列,且a1<b1<a2<b2<a3,其中a,b,m,n∈N*
(Ⅰ)求a的值;
(Ⅱ)若數(shù)列{1+am}與數(shù)列{bn}有公共項,將所有公共項按原來順序排列后構成一個新數(shù)列{cn},求數(shù)列{cn}的通項公式;
(Ⅲ)設dm=$\frac{a_m}{2m}$,m∈N*,求證:$\frac{1}{{1+{d_1}}}$+$\frac{2}{{(1+{d_1})(1+{d_2})}}$+…+$\frac{n}{{(1+{d_1})(1+{d_2})…(1+{d_n})}}$<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓E的中心在原點,焦點在坐標軸上,且經(jīng)過兩點M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)和N(1,$\frac{\sqrt{2}}{2}$).
(1)求橢圓E的方程;
(2)設點F($\frac{\sqrt{2}}{3}$,0),過點F作直線l交橢圓E于AB兩點,以AB為直徑的圓交y軸于P、Q兩點,劣弧長PQ記為d,求$\fracl04on2j{|AB|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若函數(shù)f(x)=|x-1|+m|x-2|+6|x-3|在x=2時取得最小值,則實數(shù)m的取值范圍是[5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)$f(x)=2sin(\frac{x}{2}+\frac{π}{3}),x∈R$.
(1)求它的周期;
(2)求f(x)最大值和此時相應的x的值;
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.點P到A(-2,0)的距離是點P到B(1,0)的距離的2倍.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)點P與點Q關于點(2,1)對稱,點C(3,0),求|QA|2+|QC|2的最大值和最小值.
(Ⅲ)若過A的直線從左向右依次交第(II)問中Q的軌跡于不同兩點E,F(xiàn),$\overrightarrow{FA}$=λ$\overrightarrow{EA}$,判斷λ的取值范圍并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知F1(-2,0),F(xiàn)2(2,0)分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,且橢圓C過點(-$\sqrt{3}$,1).
(1)求橢圓C的方程;
(2)直線l過橢圓C的右焦點F2且斜率為1與橢圓C交于A,B兩點,求弦AB的長;
(3)以第(2)題中的AB為邊作一個等邊三角形ABP,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=(x-4)|x|在[a,4]上的最小值為-4,則實數(shù)a的取值范圍是(  )
A.$[{2-2\sqrt{2},2}]$B.(-∞,2]C.$[{2-2\sqrt{2},2})$D.$({2-2\sqrt{2},2})$

查看答案和解析>>

同步練習冊答案