【題目】已知為常數(shù),函數(shù).

1)當(dāng)時,求關(guān)于的不等式的解集;

2)當(dāng)時,若函數(shù)上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

3)對于給定的,且,證明:關(guān)于的方程在區(qū)間內(nèi)有一個實(shí)數(shù)根.

【答案】1)當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;(2;(3)證明見解析.

【解析】

1)當(dāng)時,,分,三種情況討論,求不等式的解集;

2)當(dāng)時,,其圖象的對稱軸為.,,三種情況討論,即求實(shí)數(shù)的取值范圍;

3)設(shè).,得.對于給定的,且,得在區(qū)間上單調(diào),故在區(qū)間上有且只有一個零點(diǎn),即方程在區(qū)間內(nèi)有一個實(shí)數(shù)根.

1)當(dāng)時,.

當(dāng),即時,由,

不等式的解集為.

當(dāng),即時,恒成立,不等式的解集為.

當(dāng),即時,由,

不等式的解集為.

綜上,當(dāng)時,不等式的解集為;

當(dāng)時,不等式的解集為;

當(dāng)時,不等式的解集為.

2)當(dāng)時,,其圖象的對稱軸為.

當(dāng),即時,上單調(diào)遞增,

上存在零點(diǎn),,即得.

.

當(dāng),即時,上存在零點(diǎn),

解得.

.

當(dāng),即時,上單調(diào)遞減,

上存在零點(diǎn),,即得.

.

綜上,.

實(shí)數(shù)的取值范圍為.

3)設(shè).

當(dāng)給定時,為定值.

,

.

又對于給定的,且,

在區(qū)間上單調(diào),即在區(qū)間上單調(diào),

在區(qū)間上有且只有一個零點(diǎn),

即方程在區(qū)間內(nèi)有一個實(shí)數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱,三個側(cè)面均為矩形,底面為等腰直角三角形, ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上運(yùn)動.

1)求證 ;

2)當(dāng)點(diǎn)運(yùn)動到某一位置時,恰好使二面角的平面角的余弦值為,求點(diǎn)到平面的距離;

3)在(2)的條件下,試確定線段上是否存在一點(diǎn),使得平面?若存在,確定其位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)試探究函數(shù)在定義域內(nèi)是否存在零點(diǎn),若存在,請指出有幾個零點(diǎn);若不存在,請說明理由;

(Ⅲ)若,且上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

Ⅰ)若函數(shù)處的切線與直線平行,的值;

Ⅱ)若對于定義域內(nèi)的任意,總存在使得,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過適當(dāng)圖象的變換得到函數(shù)的圖象, 寫出變換過程;

(3) 若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列滿足,為數(shù)列的前項(xiàng)和.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和

3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】牡丹江一中2019年將實(shí)行新課程改革,即除語、數(shù)、外三科為必考科目外,還要在理、化、生、史、地、政六科中選擇三科作為選考科目.已知某生的高考志愿為北京大學(xué)環(huán)境科學(xué)專業(yè),按照17年北大高考招生選考科目要求物、化必選,為該生安排課表(上午四節(jié)、下午四節(jié),上午第四節(jié)和下午第一節(jié)不算相鄰),現(xiàn)該生某天最后兩節(jié)為自習(xí)課,且數(shù)學(xué)不排下午第一節(jié),語文、外語不相鄰,則該生該天課表有( 。┓N.

A. 444B. 1776C. 1440D. 1560

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某早餐店對一款新口味的酸奶進(jìn)行了一段時間試銷,定價(jià)為5元/瓶.酸奶在試銷售期間足量供應(yīng),每天的銷售數(shù)據(jù)按照[15,25],(25,35],(35,45],(45,55]分組,得到如下頻率分布直方圖,以不同銷量的頻率估計(jì)概率.試銷結(jié)束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱50瓶,批發(fā)成本85元;小箱每箱30瓶,批發(fā)成本65元.由于酸奶保質(zhì)期短,當(dāng)天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計(jì)算時每個分組取中間值作為代表,比如銷量為(45,55]時看作銷量為50瓶).

(1)設(shè)早餐店批發(fā)一大箱時,當(dāng)天這款酸奶的利潤為隨機(jī)變量X,批發(fā)一小箱時,當(dāng)天這款酸奶的利潤為隨機(jī)變量Y,求X和Y的分布列;

(2)從早餐店的收益角度和利用所學(xué)的知識作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?(必須作出一種合理的選擇)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱ABCD-A1B1C1D1中,CDAB, ABBC,AB=BC=2CD=2,側(cè)棱AA1⊥平面ABCD.且點(diǎn)MAB1的中點(diǎn)

(1)證明:CM∥平面ADD1A1;

(2)求點(diǎn)M到平面ADD1A1的距離.

查看答案和解析>>

同步練習(xí)冊答案