如圖,正方形ABCD所在的平面與三角形CDE所在的平面交于CDAE⊥平面CDE,且AB=2AE.

(1)求證:AB∥平面CDE;
(2)求證:平面ABCD⊥平面ADE.
(1)見解析(2)見解析
(1)正方形ABCD中,ABCD,
AB?平面CDECD?平面CDE,
所以AB∥平面CDE.
(2)因?yàn)?i>AE⊥平面CDE,且CD?平面CDE,
所以AECD,又正方形ABCD中,CDAD,且AEADA,
AE、AD?平面ADE,所以CD⊥平面ADE
CD?平面ABCD,
所以平面ABCD⊥平面ADE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱中,D、E分別是BC和的中點(diǎn),已知AB=AC=AA1=4,ÐBAC=90°.

(1)求證:⊥平面;
(2)求二面角的余弦值;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在圓錐中,已知,的直徑,點(diǎn)在底面圓周上,且的中點(diǎn).

(1)證明:平面;
(2)求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P­ABCD中,PA⊥底面ABCD,PCAD,底面ABCD為梯形,ABDC,ABBC,PAABBC,點(diǎn)E在棱PB上,且PE=2EB.

(1)求證:平面PAB⊥平面PCB;
(2)求證:PD∥平面EAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正方體中,、為棱、的中點(diǎn).

(1)求證:∥平面
(2)求證:平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知PA垂直于正方形ABCD所在平面,連接PB、PC、PD、AC、BD,則下列垂直關(guān)系中正確的序號(hào)是              .

①平面平面PBC ②平面平面PAD ③平面平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,E,F分別為棱AA1,CC1的中點(diǎn),則在空間中與三條直線A1D1,EF,CD都相交的直線(  )
A.不存在B.有且只有兩條
C.有且只有三條D.有無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正方體ABCD-A1B1C1D1中,下面結(jié)論中正確的是________(把正確結(jié)論的序號(hào)都填上).
BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方體,點(diǎn),分別是線段,上的動(dòng)點(diǎn),觀察直線,.給出下列結(jié)論:
①對(duì)于任意給定的點(diǎn),存在點(diǎn),使得;
②對(duì)于任意給定的點(diǎn),存在點(diǎn),使得
③對(duì)于任意給定的點(diǎn),存在點(diǎn),使得
④對(duì)于任意給定的點(diǎn),存在點(diǎn),使得

其中正確結(jié)論的個(gè)數(shù)是(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案