【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,圓的方程為,直線的極坐標(biāo)方程為.

(I )寫(xiě)出的極坐標(biāo)方程和的平面直角坐標(biāo)方程;

(Ⅱ) 若直線的極坐標(biāo)方程為,設(shè)的交點(diǎn)為的交點(diǎn)為的面積.

【答案】(Ⅰ)圓的極坐標(biāo)方程為, 的平面直角坐標(biāo)方程為;

(Ⅱ).

【解析】試題分析:(根據(jù) ,即可得到的極坐標(biāo)方程和的平面直角坐標(biāo)方程;(分別將代入的極坐標(biāo)方程, 即可求出的面積.

試題解析:()直角坐標(biāo)與極坐標(biāo)互化公式為,

∵圓的普通方程為,

∴把代入方程得, ,

的極坐標(biāo)方程為, 的平面直角坐標(biāo)方程為

)分別將代入的極坐標(biāo)方程得; , .

的面積為

的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在古代,直角三角形中較短的直角邊稱為“勾”,較長(zhǎng)的直角邊稱為“股”,斜邊稱為“弦”.三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽用“弦圖”( 如圖) 證明了勾股定理,證明方法敘述為:“按弦圖,又可以勾股相乘為朱實(shí)二,倍之為朱實(shí)四,以勾股之差自相乘為中黃實(shí),加差實(shí),亦成弦實(shí).”這里的“實(shí)”可以理解為面積.這個(gè)證明過(guò)程體現(xiàn)的是這樣一個(gè)等量關(guān)系:“兩條直角邊的乘積是兩個(gè)全等直角三角形的面積的和(朱實(shí)二 ),4個(gè)全等的直角三角形的面積的和(朱實(shí)四) 加上中間小正方形的面積(黃實(shí)) 等于大正方形的面積(弦實(shí))”. 若弦圖中“弦實(shí)”為16,“朱實(shí)一”為,現(xiàn)隨機(jī)向弦圖內(nèi)投入一粒黃豆(大小忽略不計(jì)),則其落入小正方形內(nèi)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫(xiě)出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,且過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)分別是橢圓的下頂點(diǎn)和上頂點(diǎn), 是橢圓上異于的任意一點(diǎn),過(guò)點(diǎn)軸于為線段的中點(diǎn),直線與直線交于點(diǎn)為線段的中點(diǎn), 為坐標(biāo)原點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為比較甲、乙兩地某月14時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:

①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;

②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;

③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;

④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.

其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號(hào)為(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面四邊形ABCD中,CD=1,BC=2,∠C=120°

(1)求cos∠CBD的值;

(2)若AD=4,cos∠ABC,求∠A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人參加普法知識(shí)競(jìng)賽,共有5題,選擇題3個(gè),判斷題2個(gè),甲、乙兩人各抽一題.

1)甲、乙兩人中有一個(gè)抽到選擇題,另一個(gè)抽到判斷題的概率是多少?

2)甲、乙兩人中至少有一人抽到選擇題的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究函數(shù)的圖象與性質(zhì).

1)下表是yx的幾組對(duì)應(yīng)值.

其中m的值為_______________

2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并已畫(huà)出了函數(shù)圖象的一部分,請(qǐng)你畫(huà)出該圖象的另一部分;

3)結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的一條性質(zhì):_________

4)若關(guān)于x的方程2個(gè)實(shí)數(shù)根,則t的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案