【題目】已知向量 =(m,cos2x), =(sin2x,n),設(shè)函數(shù)f(x)= ,且y=f(x)的圖象過點(diǎn)( , )和點(diǎn)( ,﹣2). (Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個(gè)單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點(diǎn)到點(diǎn)(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.
【答案】解:(Ⅰ)已知: , , 則: =msin2x+ncos2x,
y=f(x)的圖象過點(diǎn)y=f(x)的圖象過點(diǎn)( , )和點(diǎn)( ,﹣2).
則: 解得: ,
即:m= ,n=1
(Ⅱ)由(Ⅰ)得: = ,f(x)向左平移φ個(gè)單位得到:
g(x)=2sin(2x+2Φ+ ),
設(shè)g(x)的對(duì)稱軸x=x0 , 最高點(diǎn)的坐標(biāo)為:(x0 , 2)點(diǎn)(0,3)的距離的最小值為1,則: ,
則:g(0)=2,
解得:Φ= ,
所以:g(x)=2sin(2x+ )=2cos2x.
令:﹣π+2kπ≤2x≤2kπ (k∈Z)
則:單調(diào)遞增區(qū)間為:[ ](k∈Z)
故答案為:(Ⅰ)m= ,n=1
(Ⅱ)單調(diào)遞增區(qū)間為:[ ](k∈Z)
【解析】(Ⅰ)首先根據(jù)向量的數(shù)量積的坐標(biāo)運(yùn)算求得f(x)=msin2x+ncos2x,進(jìn)一步根據(jù)圖象經(jīng)過的點(diǎn)求得:m和n的值.(Ⅱ)由(Ⅰ)得: = ,f(x)向左平移φ個(gè)單位得到g(x)=2sin(2x+2Φ+ )設(shè)g(x)的對(duì)稱軸x=x0 , 最高點(diǎn)的坐標(biāo)為:(x0 , 2)點(diǎn)(0,3)的距離的最小值為1,則:g(x)=2sin(2x+ )=2cos2x,進(jìn)一步求得單調(diào)區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2an﹣2(n∈N+)
(1)求{an}的通項(xiàng)公式;
(2)若bn=3nan,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲船以每小時(shí) 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,此時(shí)兩船相距20海里,當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距 海里,問乙船每小時(shí)航行多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線與橢圓交于, 兩點(diǎn),直線, 分別與軸交于點(diǎn), .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,則log (a5+a7+a9)的值是( )
A.﹣
B.﹣5
C.5
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)镈,滿足:①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[ ]D,使得f(x)在[ ]上的值域?yàn)閇a,b],那么就稱函數(shù)y=f(x)為“優(yōu)美函數(shù)”,若函數(shù)f(x)=logc(cx﹣t)(c>0,c≠1)是“優(yōu)美函數(shù)”,則t的取值范圍為( )
A.(0,1)
B.(0, )
C.(﹣∞, )
D.(0, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: 恒過定點(diǎn),圓經(jīng)過點(diǎn)和點(diǎn),且圓心在直線上.
(1)求定點(diǎn)的坐標(biāo);
(2)求圓的方程;
(3)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn),問:在軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com