拋物線y2=4x的焦點為F,準(zhǔn)線為l,點A是拋物線上一點,且∠AFO=120°(O為坐標(biāo)原點),AK⊥l,垂足為K,則△AKF的面積是
4
3
4
3
分析:先確定拋物線的焦點坐標(biāo),準(zhǔn)線方程,求出直線AF的方程,進而可求點A的坐標(biāo),由此可求△AKF的面積
解答:解:由題意,拋物線y2=4x的焦點坐標(biāo)為F(1,0),準(zhǔn)線方程為x=-1
∵∠AFO=120°(O為坐標(biāo)原點),
kAF=tan60°=
3

∴直線AF的方程為:y=
3
(x-1)

代入拋物線方程可得:3(x-1)2=4x
∴3x2-10x+3=0
∴x=3或x=
1
3

∵∠AFO=120°(O為坐標(biāo)原點),
∴A(3,±2
3

∴△AKF的面積是
1
2
×(3+1)×2
3
=4
3

故答案為:4
3
點評:本題以拋物線的性質(zhì)為載體,考查三角形面積的計算,求出點A的坐標(biāo)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點為F,準(zhǔn)線為l,則過點F和M(4,4)且與準(zhǔn)線l相切的圓的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點為F.
(1)若直線l過點M(4,0),且F到直線l的距離為2,求直線l的方程;
(2)設(shè)A,B為拋物線上兩點,且AB不與X軸垂直,若線段AB中點的橫坐標(biāo)為2.求證:線段AB的垂直平分線恰過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點為F,過點F的直線交拋物線于A,B兩點,且AF=2BF,則A點的坐標(biāo)為
(5,2
2
)或(5,-2
2
(5,2
2
)或(5,-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)已知拋物線y2=4x的焦點為F,過F的直線與該拋物線相交于A(x1,y1),B(x2,y2)兩點,則
y
2
1
+
y
2
2
的最小值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)在拋物線
y
2
 
=4x
的焦點為圓心,并與拋物線的準(zhǔn)線相切的圓的方程是
(x-1)2+y2=4
(x-1)2+y2=4

查看答案和解析>>

同步練習(xí)冊答案