已知圓C:x2+y2=9,點(diǎn)A(-5,0),直線l:x-2y=0.
(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A),滿足:對(duì)于圓C上任一點(diǎn)P,都有
PB
PA
為一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo).
(1)設(shè)所求直線方程為y=-2x+b,即2x+y-b=0,∵直線與圓相切,
|-b|
22+12
=3
,得b=±3
5
,
∴所求直線方程為y=-2x±3
5
,
(2)方法1:假設(shè)存在這樣的點(diǎn)B(t,0),
當(dāng)P為圓C與x軸左交點(diǎn)(-3,0)時(shí),
PB
PA
=
|t+3|
2

當(dāng)P為圓C與x軸右交點(diǎn)(3,0)時(shí),
PB
PA
=
|t-3|
8
,
依題意,
|t+3|
2
=
|t-3|
8
,解得,t=-5(舍去),或t=-
9
5

下面證明點(diǎn)B(-
9
5
,0)
對(duì)于圓C上任一點(diǎn)P,都有
PB
PA
為一常數(shù).
設(shè)P(x,y),則y2=9-x2,
PB2
PA2
=
(x+
9
5
)
2
+y2
(x+5)2+y2
=
x2+
18
5
x+
81
25
+9-x2
x2+10x+25+9-x2
=
18
25
(5x+17)
2(5x+17)
=
9
25

從而
PB
PA
=
3
5
為常數(shù).
方法2:假設(shè)存在這樣的點(diǎn)B(t,0),使得
PB
PA
為常數(shù)λ,則PB22PA2,
∴(x-t)2+y22[(x+5)2+y2],將y2=9-x2代入得,
x2-2xt+t2+9-x22(x2+10x+25+9-x2),
即2(5λ2+t)x+34λ2-t2-9=0對(duì)x∈[-3,3]恒成立,
5λ2+t=0
34λ2-t2-9=0
,解得
λ=
3
5
t=-
9
5
λ=1
t=-5
(舍去),
所以存在點(diǎn)B(-
9
5
,0)
對(duì)于圓C上任一點(diǎn)P,都有
PB
PA
為常數(shù)
3
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C滿足以下條件:(1)圓上一點(diǎn)A關(guān)于直線x+2y=0的對(duì)稱點(diǎn)B仍在圓上,(2)圓心在直線3x-2y-8=0上,(3)與直線x-y+1=0相交截得的弦長(zhǎng)為2
2
,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一圖圓切直線l1:x-6y-10=0于點(diǎn)P(右,-1),且圓心在直線l2:5x-3y=0上,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓O:x2+y2=4和點(diǎn)M(1,a),
(1)若過(guò)點(diǎn)M有且只有一條直線與圓O相切,求實(shí)數(shù)a的值,并求出切線方程;
(2)若a=
2
,過(guò)點(diǎn)M的圓的兩條弦AC.BD互相垂直,求AC+BD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓M:x2+y2+2x-4y+3=0,若圓M的切線過(guò)點(diǎn)(0,1),求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線l與圓O:x2+y2=1在第一象限內(nèi)相切于點(diǎn)C,并且分別與x,y軸相交于A、B兩點(diǎn),則|AB|的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線y=x+b與曲線x=
1-(y-1)2
恰有一個(gè)公共點(diǎn),則b的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(Ⅰ)已知圓O:x2+y2=4和點(diǎn)M(1,a),若實(shí)數(shù)a>0且過(guò)點(diǎn)M有且只有一條直線與圓O相切,求實(shí)數(shù)a的值,并求出切線方程;
(Ⅱ)過(guò)點(diǎn)(
2
,0)引直線l與曲線y=
1-x2
相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線y=1+
4-x2
(x∈[-2,2])
與直線y=k(x-2)+4兩個(gè)公共點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是( 。
A.(0,
5
12
)
B.(
1
3
,
3
4
)
C.(
5
12
,+∞)
D.(
5
12
,
3
4
]

查看答案和解析>>

同步練習(xí)冊(cè)答案