6.在正方形ABCD中,E是線段CD的中點,若$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BD}$,則λ-μ=$\frac{1}{2}$.

分析 畫出示意圖,利用向量的運算法則將$\overrightarrow{AE}$用$\overrightarrow{AB},\overrightarrow{BD}$表示即可.

解答 解:如圖在正方形ABCD中,E是線段CD的中點,若$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BD}$=$\overrightarrow{AD}+\overrightarrow{DE}=\overrightarrow{BC}+\frac{1}{2}\overrightarrow{AB}$=$\overrightarrow{DC}-\overrightarrow{DB}+\frac{1}{2}\overrightarrow{AB}$=$\overrightarrow{AB}+\overrightarrow{BD}+\frac{1}{2}\overrightarrow{AB}=\frac{3}{2}\overrightarrow{AB}+\overrightarrow{BD}$,
所以$λ=\frac{3}{2},μ=1$,$λ-μ=\frac{1}{2}$;
故答案為:$\frac{1}{2}$.

點評 本題考查了平面向量的加減運算,充分利用向量的三角形法則,最終利用$\overrightarrow{AB},\overrightarrow{BD}$表示,找出對應(yīng)的系數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y滿足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$,則$\frac{{{y^2}-2xy+3{x^2}}}{x^2}$的取值范圍為( 。
A.[2,6]B.[2,4]C.[1,6]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=ax2-bx+1是定義域為[a,a+1]的偶函數(shù),則a+ab=(  )
A.0B.$\frac{3}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若角θ的終邊過點P(3,-4),則sin(θ-π)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若角θ的終邊過點P(3,-4),則tan(θ+π)=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,△ABC是等邊三角形,點D在邊BC的延長線上,且BC=2CD,AD=$\sqrt{7}$.
(Ⅰ)求$\frac{sin∠CAD}{sin∠D}$的值;
(Ⅱ)求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在∠ABC=60°,∠C=90°,BC=40米的直角三角形地塊中劃出一塊矩形CDEF地塊進(jìn)行綠化.
(1)若要使矩形地塊的面積不小于300$\sqrt{3}$平方米,求CF長的取值范圍;
(2)當(dāng)矩形地塊面積最大時,現(xiàn)欲修建一條道路MN,把矩形地塊分成面積為1:3的兩部分,且點M在邊CF上,點N在邊CD上,求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知三角形ABC外接圓O的半徑為1(O為圓心),且2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=0,|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|,則$\overrightarrow{CA}$•$\overrightarrow{BC}$等于( 。
A.$-\frac{15}{4}$B.$-\frac{{\sqrt{15}}}{2}$C.$\frac{15}{4}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為An,對任意n∈N*滿足$\frac{{{A_{n+1}}}}{n+1}$-$\frac{A_n}{n}$=$\frac{1}{2}$,且a1=1,數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),b3=5,其前9項和為63.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn=$\frac{b_n}{a_n}$+$\frac{a_n}{b_n}$,數(shù)列{cn}的前n項和為Tn,若對任意正整數(shù)n,都有Tn≥2n+a,求實數(shù)a的取值范圍;
(3)將數(shù)列{an},{bn}的項按照“當(dāng)n為奇數(shù)時,an放在前面;當(dāng)n為偶數(shù)時,bn放在前面”的要求進(jìn)行“交叉排列”,得到一個新的數(shù)列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,b6,…,求這個新數(shù)列的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案