已知點(diǎn)在橢圓:上,以為圓心的圓與軸相切于橢圓的右焦點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過(guò)、兩點(diǎn)的直線交軸于點(diǎn),若, 求直線的方程;
(3)作直線與橢圓:交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線段垂直平分線上一點(diǎn),且滿足,求實(shí)數(shù)的值.
(1). (2) 或; (3)或.
【解析】
試題分析:(1)由題意知,在中, 可得.
設(shè)為圓的半徑,為橢圓的半焦距
由建立方程組,,解得:.
根據(jù)點(diǎn)在橢圓上,有結(jié)合,解得.
(2)由題意知直線的斜率存在,故設(shè)直線方程為
設(shè),利用 ,求得代人橢圓方程求 .
(3)根據(jù): , 設(shè).
根據(jù)題意可知直線的斜率存在,可設(shè)直線斜率為,則直線的方程為
把它代入橢圓的方程,消去,整理得:
由韋達(dá)定理得,則,
所以線段的中點(diǎn)坐標(biāo)為
注意討論,的情況,確定的表達(dá)式,求得實(shí)數(shù)的值.
方法比較明確,運(yùn)算繁瑣些;分類討論是易錯(cuò)之處.
試題解析:(1)由題意知,在中,
由得:
設(shè)為圓的半徑,為橢圓的半焦距
因?yàn)?/span>所以
又,解得:,則點(diǎn)的坐標(biāo)為 2分
因?yàn)辄c(diǎn)在橢圓:上,所以有
又,解得:
所求橢圓的方程為. 4分
(2)由(1)知橢圓的方程為
由題意知直線的斜率存在,故設(shè)其斜率為,
則其方程為
設(shè),由于,所以有
7分
又是橢圓上的一點(diǎn),則
解得
所以直線的方程為或 9分
(3)由題意知: :
由, 設(shè)
根據(jù)題意可知直線的斜率存在,可設(shè)直線斜率為,則直線的方程為
把它代入橢圓的方程,消去,整理得:
由韋達(dá)定理得,則,
所以線段的中點(diǎn)坐標(biāo)為
(1)當(dāng)時(shí), 則有,線段垂直平分線為軸
于是
由,解得: 11分
(2) 當(dāng)時(shí), 則線段垂直平分線的方程為
因?yàn)辄c(diǎn)是線段垂直平分線的一點(diǎn)
令,得:
于是
由,解得:
代入,解得:
綜上, 滿足條件的實(shí)數(shù)的值為或. 14分
考點(diǎn):橢圓的定義,橢圓的幾何性質(zhì),直線與圓錐曲線的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
18 |
7 |
NA |
NB |
12 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
5 |
2π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
PF1 |
PF2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省雞西市密山一中高三(下)第五次月考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com