12.已知邊長為2的正方形ABCD的四個頂點在球O的球面上,球O的表面積為80π,則OA與平面ABCD所成的角的余弦值為(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{19}}}{19}$D.$\frac{{\sqrt{30}}}{30}$

分析 作平面ABCD的垂線OM,則M為正方形中心,∠OAM為OA與平面ABCD所成的角,求出球的半徑OA,AM,即可得出所求角的余弦值.

解答 解:過O作OM⊥平面ABCD,垂足我M,則M為正方形ABCD的中心.
∵正方形ABCD的邊長為2,∴AC=2$\sqrt{2}$,AM=$\frac{1}{2}$AC=$\sqrt{2}$,
∵S球O=4πr2=80π,∴球O的半徑OA=r=2$\sqrt{5}$.
∴OA與平面ABCD所成的角的余弦值為cos∠OAM=$\frac{AM}{OA}$=$\frac{\sqrt{2}}{2\sqrt{5}}=\frac{\sqrt{10}}{10}$.
故選:B.

點評 本題考查了線面角的計算,球的結構特征,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.直三棱柱ABC-A1B1C1的所有棱長都相等,點F是棱BC中點,點E在棱CC1上,且EF⊥AB1
(Ⅰ)求證:CC1=4CE;
(Ⅱ)求二面角F-AE-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知等差數(shù)列{an}的公差為2,前n項和為Sn,且S1,S2,S4成等比數(shù)列,數(shù)列{an}的通項公式an=2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.對于無窮數(shù)列{an}與{bn},記A={x|x=an,n∈N*},B={x|x=bn,n∈N*},若同時滿足條件:①{an},{bn}均單調(diào)遞增;②A∩B=∅且A∪B=N*,則稱{an}與{bn}是無窮互補數(shù)列.
(1)若an=2n-1,bn=4n-2,判斷{an}與{bn}是否為無窮互補數(shù)列,并說明理由;
(2)若an=2n且{an}與{bn}是無窮互補數(shù)列,求數(shù)量{bn}的前16項的和;
(3)若{an}與{bn}是無窮互補數(shù)列,{an}為等差數(shù)列且a16=36,求{an}與{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.2016年1月1日起全國統(tǒng)一實施全面兩孩政策.為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取70后和80后作為調(diào)查對象,隨機調(diào)查了100位,得到數(shù)據(jù)如表:
生二胎不生二胎合計
70后301545
80后451055
合計7525100
(Ⅰ)以這100個人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率估計概率,若從該市70后公民中隨機抽取3位,記其中生二胎的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望;
(Ⅱ)根據(jù)調(diào)查數(shù)據(jù),是否有90%以上的把握認為“生二胎與年齡有關”,并說明理由.
參考數(shù)據(jù):
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{4}+{y}^{2}=1$的左、右焦點,點P是該橢圓上一個動點,則$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$的取值范圍是(  )
A.[-2,1)B.(-2,1)C.(-2,1]D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在平面直角坐標系xoy中,以坐標原點O為極點,x軸的正半軸為極軸,取與直角坐標系相同的長度單位建立極坐標系.曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=acosφ\\ y=sinφ\end{array}\right.({φ為參數(shù)})$,曲線C2的極坐標方程為θ=$\frac{π}{4}({ρ≥0})$且C1與C2交點的橫坐標為$\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求曲線C1的普通方程;
(Ⅱ)設A,B為曲線C1與y軸的兩個交點,M為曲線C1上不同于A,B的任意一點,若直線AM與MB分別與x軸交于P,Q兩點,求證:|OP|•|OQ|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在一次馬拉松比賽中,30名運動員的成績(單位:分鐘)的莖葉圖如圖所示.若將運動員按成績由好到差編號為1-30號,再用系統(tǒng)抽樣方法從中抽取6人,則其中成績在區(qū)間[130,151]上的運動員人數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=x-2,g(x)=x3-tanx,則下列說法正確的是( 。
A.f(x)•g(x)是奇函數(shù)B.f(x)•g(x)是偶函數(shù)C.f(x)+g(x)是奇函數(shù)D.f(x)+g(x)是偶函數(shù)

查看答案和解析>>

同步練習冊答案