工作人員需進(jìn)入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進(jìn)去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人,F(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.

(Ⅰ)如果按甲最先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(Ⅱ)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望)

(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達(dá)到最小.

 

【答案】

(Ⅰ)無關(guān);

(Ⅱ);

(Ⅲ)以甲最先、乙次之、丙最后的順序派人

【解析】本試題主要是考查了相互獨立事件的概率的乘法公式,以及均值的求解和期望公式的運用。

(I)無論以怎樣的順序派出人員,任務(wù)不能被完成的概率都是可以解得,所以任務(wù)能被完成的概率與三個被派出的先后順序無關(guān),則可得。

(II)當(dāng)依次派出的三個人各自完成任務(wù)的概率分別為求解出時,隨機變量X的分布列可以得到,并且所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)EX也可以求解。

(III)由(II)的結(jié)論知,當(dāng)以甲最先、乙次之、丙最后的順序派人時,

根據(jù)常理,優(yōu)先派出完成任務(wù)概率大的人,可減少所需派出的人員數(shù)目的均值.

解:(I)無論以怎樣的順序派出人員,任務(wù)不能被完成的概率都是,所以任務(wù)能被完成的概率與三個被派出的先后順序無關(guān),并等于

(II)當(dāng)依次派出的三個人各自完成任務(wù)的概率分別為時,隨機變量X的分布列為   

X

1

2

3

P

所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)EX是

 (III)(方法一)由(II)的結(jié)論知,當(dāng)以甲最先、乙次之、丙最后的順序派人時,

根據(jù)常理,優(yōu)先派出完成任務(wù)概率大的人,可減少所需派出的人員數(shù)目的均值.

下面證明:對于的任意排列,都有

……………………(*)

事實上,

即(*)成立.

(方法二)(i)可將(II)中所求的EX改寫為若交換前兩人的派出順序,則變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090811201159756368/SYS201209081120381339794573_DA.files/image015.png">.由此可見,當(dāng)時,交換前兩人的派出順序可減小均值.

(ii)也可將(II)中所求的EX改寫為,或交換后兩人的派出順序,則變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012090811201159756368/SYS201209081120381339794573_DA.files/image018.png">.由此可見,若保持第一個派出的人選不變,當(dāng)時,交換后兩人的派出順序也可減小均值.

序綜合(i)(ii)可知,當(dāng)時,EX達(dá)到最小. 即完成任務(wù)概率大的人優(yōu)先派出,可減小所需派出人員數(shù)目的均值,這一結(jié)論是合乎常理的

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

20、工作人員需進(jìn)入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進(jìn)去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人.現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別p1,p2,p3,假設(shè)p1,p2,p3互不相等,且假定各人能否完成任務(wù)的事件相互獨立.
(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?
(Ⅱ)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為q1,q2,q3,其中q1,q2,q3是p1,p2,p3的一個排列,求所需派出人員數(shù)目X的分布列和均值(數(shù)學(xué)期望)EX;
(Ⅲ)假定l>p1>p2>p3,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分13分)

工作人員需進(jìn)入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進(jìn)去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人,F(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.

(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(Ⅱ)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)學(xué)期望);

(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最小,并證明之。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分13分)

工作人員需進(jìn)入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進(jìn)去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人,F(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.

(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(Ⅱ)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)學(xué)期望);

(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最小,并證明之。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年普通高中招生考試安徽省市高考理科數(shù)學(xué) 題型:解答題

本小題滿分13分)

工作人員需進(jìn)入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進(jìn)去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人,F(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.

(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(Ⅱ)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);

(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達(dá)到最小。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆福建省高二下學(xué)期期末模塊測試數(shù)學(xué)(理 題型:解答題

(本題滿分13分)

工作人員需進(jìn)入核電站完成某項具有高輻射危險的任務(wù),每次只派一個人進(jìn)去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個人。現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨立.

(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(Ⅱ)若按某指定順序派人,這三個人各自能完成任務(wù)的概率依次為,其中的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)學(xué)期望)

(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最小,并證明之。

 

查看答案和解析>>

同步練習(xí)冊答案