【題目】已知函數(shù)f(x)=ex+e-x,g(x)=2x+ax3,a為實(shí)常數(shù).
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=-1時(shí),證明:存在x0∈(0,1),使得y=f(x)和y=g(x)的圖象在x=x0處的切線互相平行.
【答案】(1)見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)代入a的值,令h(x)=f′(x)﹣g′(x)=ex﹣e﹣x﹣2+3x2,根據(jù)函數(shù)的單調(diào)性證明即可.
(1)g′(x)=3ax2+2,
當(dāng)a≥0時(shí),g′(x)>0故g(x)的單調(diào)增區(qū)間為(﹣∞,+∞).
當(dāng)a<0時(shí),令g′(x)≥0得x,g(x)的單調(diào)增區(qū)間為[x],
g(x)的單調(diào)減區(qū)間為:(﹣∞,),(,+∞)
(2)當(dāng)a=﹣1時(shí),f′(x)=ex﹣e﹣x,g′(x)=2﹣3x2,
x0∈(0,1),使得y=f(x)和y=g(x)的圖象在x=x0處的切線互相平行.
即x0∈(0,1)使得f′(x0)=g′(x0),且f(x0)≠g(x0),
令h(x)=f′(x)﹣g′(x)=ex﹣e﹣x﹣2+3x2,
h(0)=﹣2<0,h(1)=e2+3>0,
∴x0∈(0,1)使得f′(x0)=g′(x0).
∵當(dāng)x∈(0,)時(shí),g′(x)>0,當(dāng)x∈(,1)時(shí)g′(x)<0,
∴所以g(x)在區(qū)間(0,1)的最大值為g(),g()2.
而f(x)=ex+e﹣x≥22,
∴x∈(0,1)時(shí)f(x)>g(x)恒成立,∴f(x0)≠g(x0).
從而當(dāng)a=﹣1時(shí),:x0∈(0,1),使得y=f(x)和y=g(x)的圖象在x=x0處的切線互相平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期,某公交公司分別推出支付寶和徽信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表l所示:
表1
根據(jù)以上數(shù)據(jù),繪制了如右圖所示的散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),(c,d均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次y關(guān)于活動(dòng)推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由);
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求y關(guān)于x的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次;
參考數(shù)據(jù):
其中
參考公式:
對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)圖象經(jīng)過(guò)的定點(diǎn)坐標(biāo);
(2)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程及函數(shù)單調(diào)區(qū)間;
(3)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系中,曲線的參數(shù)方程為: (為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;
(2)將曲線經(jīng)過(guò)伸縮變換后得到曲線,若, 分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說(shuō)明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某地三角工廠分別位于邊長(zhǎng)為2的正方形的兩個(gè)頂點(diǎn)及中點(diǎn)處.為處理這三角工廠的污水,在該正方形區(qū)域內(nèi)(含邊界)與等距的點(diǎn)處建一個(gè)污水處理廠,并鋪設(shè)三條排污管道,記輔設(shè)管道總長(zhǎng)為千米.
(1)按下列要求建立函數(shù)關(guān)系式:
(i)設(shè),將表示成的函數(shù);
(ii)設(shè),將表示成的函數(shù);
(2)請(qǐng)你選用一個(gè)函數(shù)關(guān)系,確定污水廠位置,使鋪設(shè)管道總長(zhǎng)最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)于2018年11月5日至10日在上海的國(guó)家會(huì)展中心舉辦.國(guó)家展、企業(yè)展、經(jīng)貿(mào)論壇、高新產(chǎn)品匯集……首屆進(jìn)博會(huì)高點(diǎn)紛呈.一個(gè)更加開放和自信的中國(guó),正用實(shí)際行動(dòng)為世界構(gòu)筑共同發(fā)展平臺(tái),展現(xiàn)推動(dòng)全球貿(mào)易與合作的中國(guó)方案.
某跨國(guó)公司帶來(lái)了高端智能家居產(chǎn)品參展,供購(gòu)商洽談采購(gòu),并決定大量投放中國(guó)市場(chǎng).已知該產(chǎn)品年固定研發(fā)成本30萬(wàn)美元,每生產(chǎn)一臺(tái)需另投入90美元.設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品萬(wàn)臺(tái)且全部售完,每萬(wàn)臺(tái)的銷售收入為萬(wàn)美元,
(1)寫出年利潤(rùn)(萬(wàn)美元)關(guān)于年產(chǎn)量(萬(wàn)臺(tái))的函數(shù)解析式;(利潤(rùn)=銷售收入-成本)
(2)當(dāng)年產(chǎn)量為多少萬(wàn)臺(tái)時(shí),該公司獲得的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(,且),,(其中為的導(dǎo)函數(shù)).
(1)當(dāng)時(shí),求的極大值點(diǎn);
(2)討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值點(diǎn);
(2)已知T(,)為函數(shù),的公共點(diǎn),且函數(shù),在點(diǎn)T處的切線相同,求a的值;
(3)若函數(shù)在(0,)上的零點(diǎn)個(gè)數(shù)為2,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com