【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,并整理得到頻率分布直方圖(如圖所示).

)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù).

)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

【答案】20人(

【解析】

)先計(jì)算樣本中分?jǐn)?shù)不小于50的頻率,進(jìn)而計(jì)算分?jǐn)?shù)在區(qū)間,內(nèi)的頻數(shù),可估計(jì)總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù);

)由題意計(jì)算出樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù),從而可以得到樣本中男女生的人數(shù),根據(jù)分層抽樣原理,得出總體中男女人數(shù)之比。

)根據(jù)題意,樣本中分?jǐn)?shù)不小于50的頻率為,分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)為

所以總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)估計(jì)為

)由題意可知,樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù)為,

所以樣本中分?jǐn)?shù)不小于70的男生人數(shù)為

所以樣本中的男生人數(shù)為,女生人數(shù)為,男生和女生人數(shù)的比例為

所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計(jì)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓的方程為,點(diǎn)為圓上的動(dòng)點(diǎn),過點(diǎn)的直線被圓截得的弦長為

(1)求直線的方程;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張軍在網(wǎng)上經(jīng)營了一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價(jià)格依次為120/千克、80/千克、70/千克、40/千克.為了增加銷量,張軍對(duì)以上四種干果進(jìn)行促銷,若一次性購買干果的總價(jià)達(dá)到150元,顧客就少付x(xZ)元,每筆訂單顧客在網(wǎng)上支付成功后,張軍會(huì)得到支付款的80%.

①當(dāng)x15時(shí),顧客一次性購買松子和腰果各1千克,需要支付_________________元;

在促銷活動(dòng)中,為保證張軍每筆訂單得到的金額均不低于促銷的總價(jià)的70%,則x的最大值為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線C及其準(zhǔn)線分別交于M,N兩點(diǎn),F為拋物線的焦點(diǎn),若,則m等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCDABCD的棱長為a,連接AC,AD,AB,BD,BC,CD,得到一個(gè)三棱錐.求:

(1)三棱錐ABCD的表面積與正方體表面積的比值;

(2)三棱錐ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.

(1)求線段AB的中點(diǎn)M的軌跡C的方程;

(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x2+1gx)=4x+1,的定義域都是集合A,函數(shù)fx)和gx)的值域分別為ST

1)若A[1,2],求ST

2)若A[0m]ST,求實(shí)數(shù)m的值

3)若對(duì)于集合A的任意一個(gè)數(shù)x的值都有fx)=gx),求集合A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個(gè)人聚會(huì),已知:

(1)每個(gè)人至少同其中個(gè)人互相認(rèn)識(shí)

(2)對(duì)于其中任意個(gè)人,或者其中有2人相識(shí),或者余下的人中有2人相識(shí)證明:這個(gè)人中必有3人兩兩相識(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,O、E分別是BDBC的中點(diǎn),

)求證:平面BCD;

)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案