在△ABC中,tanA是以
1
3
為第3項(xiàng),9為第6項(xiàng)的等比數(shù)列的公比,tanB是以-4為第3項(xiàng),4為第7項(xiàng)的等差數(shù)列的公差,則這個(gè)三角形是
 
(從銳角三角形、直角三角形、鈍角三角形中選擇).
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列,解三角形
分析:由等差數(shù)列和等比數(shù)列的性質(zhì)求得角A、B的正切值,判斷A,B為銳角,再由兩角和的正切求得角C的正切值,判斷角C為銳角,則三角形的形狀得到判斷.
解答: 解:由題意得,9=
1
3
•(tanA)3
,即tanA=3,
∵A∈(0,π),∴A為銳角;
4=-4+4tanB,即tanB=2,
∵B∈(0,π),∴B為銳角;
∴tanC=tan[π-(A+B)]=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
3+2
1-3×2
=1

∵C∈(0,π),∴C為銳角.
∴△ABC是銳角三角形.
故答案為:銳角三角形.
點(diǎn)評(píng):本題考查了等差數(shù)列和等比數(shù)列性質(zhì)的應(yīng)用,考查了兩角和的正切,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

山區(qū)一林場(chǎng)2013年底的木材存量為30萬(wàn)立方米,森林以每年20%的增長(zhǎng)率生長(zhǎng).從今年起每年年底要砍伐1萬(wàn)立方米的木材,設(shè)從今年起的第n年底的木材存量為an萬(wàn)立方米.
(Ⅰ)試寫(xiě)出an+1與an的關(guān)系式,并證明數(shù)列{an-5}是等比數(shù)列;
(Ⅱ)問(wèn)大約經(jīng)過(guò)多少年,林場(chǎng)的木材總存量達(dá)到125萬(wàn)立方米?(參考數(shù)據(jù):lg2=0.30,lg3=0.48)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asin2x+acos2x+b.
(Ⅰ)求證:函數(shù)f(x)的圖象關(guān)于直線x=
π
8
對(duì)稱
(Ⅱ)若函數(shù)f(x)的圖象過(guò)點(diǎn)A(0,1),且當(dāng)x∈[0,
π
4
]時(shí),f(x)≤b2恒成立,試確定實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)f(x)=sin2x(x∈R)的圖象向右平移
π
4
個(gè)單位,則所得到的圖象對(duì)應(yīng)的函數(shù)在下列區(qū)間中單調(diào)遞增的是( 。
A、(
4
,π)
B、(
π
2
,
4
C、(0,
π
2
D、(-
π
4
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
π
4
+θ)=
4
5
,θ為銳角,則sinθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年來(lái),政府提倡低碳減排,某班同學(xué)利用寒假在兩個(gè)小區(qū)逐戶調(diào)查人們的生活習(xí)慣是否符合低碳觀念.若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.?dāng)?shù)據(jù)如下表(計(jì)算過(guò)程把頻率當(dāng)成概率).B小區(qū)低碳族非低碳族頻率p0.80.2A小區(qū)低碳族非低碳族頻率p0.50.5
A小區(qū)低碳族非低碳族
頻率 p0.50.5
小區(qū)低碳族非低碳族
頻率 p0.80.2
(Ⅰ) 如果甲、乙來(lái)自A小區(qū),丙、丁來(lái)自B小區(qū),求這4人中恰有2人是低碳族的概率;
(Ⅱ)A小區(qū)經(jīng)過(guò)大力宣傳,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后隨機(jī)地從A小區(qū)中任選3個(gè)人,記X表示3個(gè)人中低碳族人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不相等的實(shí)數(shù)a、b、c成等差數(shù)列,c、a、b成等比數(shù)列,則a:b:c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知P是函數(shù)f(x)=lnx(x>1)的圖象上的動(dòng)點(diǎn),該圖象在點(diǎn)p處的切線l交x軸于點(diǎn)M.過(guò)點(diǎn)P作l的垂線交x軸于點(diǎn)N,設(shè)線段MN的中點(diǎn)的橫坐標(biāo)為t,則t的最大值是( 。
A、
1
e2
B、
e
2
+
1
2e
C、
3
4
e
+
1
4
e
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1
a
1
b
<0,則下列結(jié)論正確的是( 。
A、a>b
B、ab<b
C、
b
a
-
a
b
<-2
D、a2>b2

查看答案和解析>>

同步練習(xí)冊(cè)答案