如圖,二面角α-l-β的棱l上有兩點(diǎn)B、C,AB⊥l,CD⊥l,且AB⊆α,CD⊆β,若AB=CD=BC=2,AD=4,則此二面角的大小為_(kāi)_______.

120o
分析:將向量 轉(zhuǎn)化成 ,然后等式兩邊同時(shí)平方表示出向量的模,再根據(jù)向量的數(shù)量積求出向量的夾角,而兩個(gè)向量 的夾角大小就是二面角的大。
解答:由條件,知
所以
=4+4+4+2×2×2cos<>=16
∴cos<>=
所以=60°,=120°
所以二面角的大小為120°
故答案為120°.
點(diǎn)評(píng):本題主要考查了二面角的計(jì)算,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二面角α-l-β的大小是60°,線段AB?α.B∈l,AB與l所成的角為30°.則AB與平面β所成的角的正弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:二面角α-l-β的大小是60°,線段AB?α,AB與l所成角為45°,則AB與平面β所成角的正弦值是
6
4
6
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,二面角α-l-β,線段AB?α,AB=4,B∈l,lAB與l所成的角為30°,點(diǎn)A到平面β的距離為
3
,則二面角α-l-β的大小是
60°
60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二面角α-l-β的棱l上有兩點(diǎn)B、C,AB⊥l,CD⊥l,且AB⊆α,CD⊆β,若AB=CD=BC=2,AD=4,則此二面角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在二面角α- l-β中,A、B∈α,C、D∈l,ABCD為矩形,P∈β,PA⊥α,且PA=AD,MN依次是AB、PC的中點(diǎn)

⑴ 求二面角α- l-β的大小

⑵ 求證明:MN⊥AB

⑶ 求異面直線PA與MN所成角的大小

查看答案和解析>>

同步練習(xí)冊(cè)答案