已知拋物線C:y2=
3
2
x
,F(xiàn)為拋物線C的焦點(diǎn),O為坐標(biāo)原點(diǎn),則在拋物線C上且滿足△OFP為等腰直角三角形的點(diǎn)P的個數(shù)為(  )
A、2B、4
C、2或4D、P點(diǎn)不存在
分析:首先求出F點(diǎn)坐標(biāo)和準(zhǔn)線方程,然后分情況討論(1)如果∠POF=90°,此時P在Y軸上,舍去;(2)若∠OPF=90°,能夠得出斜邊為OF=8,PF=4
2
,再根據(jù)拋物線定義得出p的橫坐標(biāo)小于零,舍去;(3)若∠OFP=90,能夠得出PF=OF=8,再利用焦點(diǎn)弦求出p的橫坐標(biāo)為零,與O點(diǎn)重合,舍去;從而得出答案.
解答:解:根據(jù)拋物線可知F(8,0),準(zhǔn)線X=-8
(1)如果∠POF=90°,這是不可能的,因?yàn)榇藭rP在Y軸上,所以舍去
(2)若∠OPF=90°那么此時等腰直角三角形的斜邊為OF=8
所以此時PF=4
2

PF=d【d為P到準(zhǔn)線的距離】,設(shè)P(x,y)
那么:d=x+8
x=4
2
-8<0
所以此時P在第二象限,不在拋物線上,舍去此種情況
(3)若∠OFP=90°那么此時OF為等腰直角三角形的直角邊,OF=8   那么PF=OF=8
還是用焦點(diǎn)弦的性質(zhì):PF=8=d=x+8     x=0
此時P與O重合,所以構(gòu)不成三角形,也舍去此種情況
所以,綜上所訴:不存在一點(diǎn)P滿足題意.
故選D.
點(diǎn)評:本題考查了拋物線的簡單性質(zhì),要注意分類討論,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個動點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點(diǎn),A為拋物線C上的動點(diǎn),過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點(diǎn)P(0,4)與點(diǎn)F的連線恰好過點(diǎn)A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點(diǎn)M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動,使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x與點(diǎn)M(-2,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊答案