8.在復(fù)平面內(nèi),復(fù)數(shù)$z=\frac{-1+i}{2-i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:復(fù)數(shù)$z=\frac{-1+i}{2-i}$=$\frac{-(1-i)(2+i)}{(2-i)(2+i)}$=$\frac{-3+i}{5}$的共軛復(fù)數(shù)$-\frac{3}{5}-\frac{1}{5}i$對(duì)應(yīng)的點(diǎn)$(-\frac{3}{5},-\frac{1}{5})$位于第三象限.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校收集該校學(xué)生從家到學(xué)校的時(shí)間后,制作成如下的頻率分布直方圖:
(1)求a的值及該校學(xué)生從家到校的平均時(shí)間;
(2)若該校因?qū)W生寢室不足,只能容納全校60%的學(xué)生住校,出于安全角度考慮,從家到校時(shí)間較長(zhǎng)的學(xué)生才住校,請(qǐng)問從家到校時(shí)間多少分鐘以上開始住校.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.橢圓E的焦點(diǎn)在x軸上,中心在原點(diǎn),其短軸上的兩個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)恰為邊長(zhǎng)是2的正方形的頂點(diǎn),則橢圓E的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{2}+\frac{y^2}{{\sqrt{2}}}=1$B.$\frac{x^2}{2}+{y^2}=1$C.$\frac{x^2}{4}+\frac{y^2}{2}=1$D.$\frac{y^2}{4}+\frac{x^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線m經(jīng)過拋物線C:y2=4x的焦點(diǎn)F,與C交于A,B兩點(diǎn),且|AF|+|BF|=10,則線段AB的中點(diǎn)D到y(tǒng)軸的距離為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的圖象經(jīng)過點(diǎn)$({0,\frac{1}{2}})$,且相鄰兩條對(duì)稱軸的距離為$\frac{π}{2}$,則函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間為[$\frac{π}{6}$,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F1,F(xiàn)2是橢圓與雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且|PF1|>|PF2|,線段PF1的垂直平分線過F2,若橢圓的離心率為e1,雙曲線的離心率為e2,則$\frac{2}{e_1}+\frac{e_2}{2}$的最小值為( 。
A.$\sqrt{6}$B.3C.6D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=acost\\ y=2sint\end{array}\right.$(t為參數(shù),a>0)以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為$ρcos({θ+\frac{π}{4}})=-2\sqrt{2}$.
(Ⅰ)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)a=2時(shí),求點(diǎn)P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點(diǎn)均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)全集U={-2,-1,0,1,2},A={x|x≤1},B={-2,0,2},則∁U(A∩B)=( 。
A.{-2,0}B.{-2,0,2}C.{-1,1,2}D.{-1,0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)p:x2+y2≤r2(x、y∈R,r>0);q:$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$(x、y∈R),若q表示的集合是p表示的集合的子集,則r的取值范圍為[$\sqrt{10},+∞$).

查看答案和解析>>

同步練習(xí)冊(cè)答案