【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線過(guò)點(diǎn)與曲線交于不同兩點(diǎn),的中點(diǎn)為,的交點(diǎn)為,求

【答案】(Ⅰ)C: ;直線的直角坐標(biāo)方程 (Ⅱ)8

【解析】

(Ⅰ)由極坐標(biāo)方程與直角坐標(biāo)方程的互化公式可直接得出結(jié)果;

(Ⅱ)先寫出直線的參數(shù)方程,代入曲線的普通方程,得到,再由直線的參數(shù)方程代入,得到,進(jìn)而可得出結(jié)果.

(Ⅰ)曲線的直角坐標(biāo)方程為:;

的直角坐標(biāo)方程為:

(Ⅱ)直線的參數(shù)方程為參數(shù)),

將其代入曲線的普通方程并整理得

設(shè)兩點(diǎn)的參數(shù)分別為,則

因?yàn)?/span>的中點(diǎn),故點(diǎn)的參數(shù)為,

設(shè)點(diǎn)的參數(shù)分別為,把代入整理得

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知可以用一系列半徑為且彼此不重疊的圓盤覆蓋平面上的所有格點(diǎn)在平面直角坐標(biāo)系中,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)為格點(diǎn)),______4 (填“大于~小于”或等于”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)a為常數(shù),且)在處取得極值.

1)求實(shí)數(shù)a的值,并求的單調(diào)區(qū)間;

2)關(guān)于x的方程上恰有1個(gè)實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;

3)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程,的方程化為直角坐標(biāo)方程

(2)若曲線,相交于兩點(diǎn),的中點(diǎn)為,過(guò)點(diǎn)作曲線的垂線交曲線兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過(guò)點(diǎn),且在點(diǎn)處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某一段海底光纜出現(xiàn)故障,需派人潛到海底進(jìn)行維修,現(xiàn)在一共有甲、乙、丙三個(gè)人可以潛水維修,由于潛水時(shí)間有限,每次只能派出一個(gè)人,且每個(gè)人只派一次,如果前一個(gè)人在一定時(shí)間內(nèi)能修好則維修結(jié)束,不能修好則換下一個(gè)人.已知甲、乙、丙在一定時(shí)間內(nèi)能修好光纜的概率分別為,且各人能否修好相互獨(dú)立.

1)若按照丙、乙、甲的順序派出維修,設(shè)所需派出人員的數(shù)目為X,求X的分布列和數(shù)學(xué)期望;

2)假設(shè)三人被派出的不同順序是等可能出現(xiàn)的,現(xiàn)已知丙在乙的下一個(gè)被派出,求光纜被丙修好的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象與直線ya恰有三個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開放40年,我國(guó)經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各50人,進(jìn)行問(wèn)卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識(shí)強(qiáng).

安全意識(shí)強(qiáng)

安全意識(shí)不強(qiáng)

合計(jì)

男性

女性

合計(jì)

(Ⅰ)求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;

(Ⅱ)已知交通安全意識(shí)強(qiáng)的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);

(Ⅲ)在(Ⅱ)的條件下,從交通安全意識(shí)強(qiáng)的駕駛員中隨機(jī)抽取2人,求抽到的女性人數(shù)的分布列及期望.

附:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

單價(jià)(元)

8

8.2

8.4

8.6

8.8

9

銷量(件)

90

84

83

80

75

68

1)若回歸直線方程,其中;試預(yù)測(cè)當(dāng)單價(jià)為10元時(shí)的銷量;

2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案