已知拋物線C的頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為.設P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.

(Ⅰ)求拋物線C的方程;

(Ⅱ)當點P(x0,y0)為直線l上的定點時,求直線AB的方程;

(Ⅲ)當點P在直線l上移動時,求|AF|·|BF|的最小值.

答案:
解析:

  (Ⅰ)依題意,設拋物線的方程為,由結合,

  解得

  所以拋物線的方程為

  (Ⅱ)拋物線的方程為,即,求導得

  設,(其中),則切線的斜率分別為,

  所以切線的方程為,即,即

  同理可得切線的方程為

  因為切線均過點,所以,

  所以為方程的兩組解.

  所以直線的方程為

  (Ⅲ)由拋物線定義可知,

  所以

  聯(lián)立方程,消去整理得

  由一元二次方程根與系數(shù)的關系可得,

  所以

  又點在直線上,所以

  所以

  所以當時,取得最小值,且最小值為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點為坐標原點,橢圓C′的對稱軸是坐標軸,拋物線C在x軸上的焦點恰好是橢圓C′的焦點
(Ⅰ)若拋物線C和橢圓C′都經(jīng)過點M(1,2),求拋物線C和橢圓C′的方程;
(Ⅱ)已知動直線l過點p(3,0),交拋物線C于A,B兩點,直線l′:x=2被以AP為直徑的圓截得的弦長為定值,求拋物線C的方程;
(Ⅲ)在(Ⅱ)的條件下,分別過A,B的拋物線C的兩條切線的交點E的軌跡為D,直線AB與軌跡D交于點F,求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣東)已知拋物線C的頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為
3
2
2
,設P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF|•|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點為(1,0),焦點在x軸上,若直線y=x+2交拋物線C于A、B兩點,線段AB的中點坐標為(5,7),求拋物線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•東莞一模)已知拋物線C的頂點為原點,焦點在x軸上,直線y=x與拋物線C交于A,B兩點,若P(2,2)為AB的中點,則拋物線C的方程為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點為坐標原點,焦點在x軸上,直線y=x與拋物線C交于A、B兩點,若P(1,1)為線段AB的中點,則拋物線C的標準方程為
y2=2x
y2=2x

查看答案和解析>>

同步練習冊答案