【題目】已知函數(shù).

(1)若對,不等式恒成立,求實數(shù)的取值范圍;

(2)記,那么當(dāng)時,是否存在區(qū)間使得函數(shù)在區(qū)間上的值域恰好為?若存在,請求出區(qū)間;若不存在,請說明理由.

【答案】;(當(dāng)時,,當(dāng)時,,當(dāng)時,不存在區(qū)間.

【解析】

試題分析:(1)首先將問題轉(zhuǎn)化為恒成立,然后運用二次函數(shù)的圖像與性質(zhì)可得出滿足題意實數(shù)的條件,即可得出所求的答案;(2)首先將問題轉(zhuǎn)化為,然后由函數(shù)上單調(diào)遞增即可得出方程組,最后根據(jù)一元二次方程的根的情況判斷其存在與不存在即可.

試題解析:(1) , ,即恒成立,則,解得

綜合得m的取值范圍為.

(注:亦可分離變量恒成立,)

(2),,,,又,,上單調(diào)遞增,,,m,n是方程-x2+(1-k)x=0的兩根,x1=0,x2=2-2k

當(dāng)時,,當(dāng)時,,當(dāng)時,不存在區(qū)間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?

(2)若次數(shù)在110以上為達標(biāo),試估計全體高一學(xué)生的達標(biāo)率為多少?

(3)通過該統(tǒng)計圖,可以估計該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃在今年內(nèi)同時出售變頻空調(diào)機和智能洗衣機,由于這兩種產(chǎn)品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實際情況(如資金、勞動力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤達到最大.已知對這兩種產(chǎn)品有直接限制的因素是資金和勞動力,經(jīng)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:

資金

每臺產(chǎn)品所需資金(百元)

月資金供應(yīng)量

(百元)

空調(diào)機

洗衣機

成本

30

20

300

勞動力(工資)

5

10

110

每臺產(chǎn)品利潤

6

8

試問:怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,求函數(shù)上的最大值的表達式;

(2)當(dāng)時,討論函數(shù)上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓內(nèi)有一點過點作直線交圓兩點

1當(dāng)經(jīng)過圓心,求直線的方程;

2當(dāng)弦被點平分時,寫出直線的方程;

3當(dāng)直線的傾斜角為,求弦的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性;

當(dāng)時,設(shè),若存在,,使,求實數(shù)的取值范圍.(為自然對數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)體育測試成績分為四個等級:優(yōu)、良、中、不及格.某班50名學(xué)生參加測試的結(jié)果如下:

等級

優(yōu)

不及格

人數(shù)

5

19

23

3

1從該班任意抽取1名學(xué)生,求這名學(xué)生的測試成績?yōu)?/span>的概率;

2)測試成績?yōu)?/span>優(yōu)的3名男生記為,,,2名女生記為,.現(xiàn)從這5人中任選2人參加學(xué)校的某項體育比賽.

寫出所有等可能的基本事件;

求參賽學(xué)生中恰有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式.

1)是否存在使對所有的實數(shù),不等式恒成立?若存在,求出的取值范圍;若不存在,請說明理由;

2)設(shè)不等式對于滿足的一切的值都成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時間,上課開始時,學(xué)生的興趣激增,中間有一段不太長的時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,并趨于穩(wěn)定.分析結(jié)果和實驗表明,設(shè)提出和講述概念的時間為(單位:分),學(xué)生的接受能力為值越大,表示接受能力越強),

(1)開講后多少分鐘,學(xué)生的接受能力最強?能維持多少時間?

(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大。唬3)若一個數(shù)學(xué)難題,需要56的接受能力以及12分鐘時間,老師能否及時在學(xué)生一直達到所需接受能力的狀態(tài)下講述完這個難題?

查看答案和解析>>

同步練習(xí)冊答案