【題目】已知函數(shù).
(1)若對,不等式恒成立,求實數(shù)的取值范圍;
(2)記,那么當(dāng)時,是否存在區(qū)間使得函數(shù)在區(qū)間上的值域恰好為?若存在,請求出區(qū)間;若不存在,請說明理由.
【答案】(Ⅰ);(Ⅱ)當(dāng)時,,當(dāng)時,,當(dāng)時,不存在區(qū)間.
【解析】
試題分析:(1)首先將問題轉(zhuǎn)化為對恒成立,然后運用二次函數(shù)的圖像與性質(zhì)可得出滿足題意實數(shù)的條件,即可得出所求的答案;(2)首先將問題轉(zhuǎn)化為,然后由函數(shù)在上單調(diào)遞增即可得出方程組,最后根據(jù)一元二次方程的根的情況判斷其存在與不存在即可.
試題解析:(1) , ,即對恒成立,則①或②,解得①或 ②
綜合得m的取值范圍為.
(注:亦可分離變量對恒成立,)
(2),,,,又,∴,∴在上單調(diào)遞增,,,m,n是方程-x2+(1-k)x=0的兩根,x1=0,x2=2-2k
∴當(dāng)時,,當(dāng)時,,當(dāng)時,不存在區(qū)間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上為達標(biāo),試估計全體高一學(xué)生的達標(biāo)率為多少?
(3)通過該統(tǒng)計圖,可以估計該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃在今年內(nèi)同時出售變頻空調(diào)機和智能洗衣機,由于這兩種產(chǎn)品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實際情況(如資金、勞動力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤達到最大.已知對這兩種產(chǎn)品有直接限制的因素是資金和勞動力,經(jīng)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:
資金 | 每臺產(chǎn)品所需資金(百元) | 月資金供應(yīng)量 (百元) | |
空調(diào)機 | 洗衣機 | ||
成本 | 30 | 20 | 300 |
勞動力(工資) | 5 | 10 | 110 |
每臺產(chǎn)品利潤 | 6 | 8 |
試問:怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值的表達式;
(2)當(dāng)時,討論函數(shù)在上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:內(nèi)有一點,過點作直線交圓于、兩點.
(1)當(dāng)經(jīng)過圓心時,求直線的方程;
(2)當(dāng)弦被點平分時,寫出直線的方程;
(3)當(dāng)直線的傾斜角為時,求弦的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,設(shè),若存在,,使,求實數(shù)的取值范圍.(為自然對數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)體育測試成績分為四個等級:優(yōu)、良、中、不及格.某班50名學(xué)生參加測試的結(jié)果如下:
等級 | 優(yōu) | 良 | 中 | 不及格 |
人數(shù) | 5 | 19 | 23 | 3 |
(1)從該班任意抽取1名學(xué)生,求這名學(xué)生的測試成績?yōu)?/span>“良”或“中”的概率;
(2)測試成績?yōu)?/span>“優(yōu)”的3名男生記為,,,2名女生記為,.現(xiàn)從這5人中任選2人參加學(xué)校的某項體育比賽.
① 寫出所有等可能的基本事件;
② 求參賽學(xué)生中恰有1名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式.
(1)是否存在使對所有的實數(shù),不等式恒成立?若存在,求出的取值范圍;若不存在,請說明理由;
(2)設(shè)不等式對于滿足的一切的值都成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時間,上課開始時,學(xué)生的興趣激增,中間有一段不太長的時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,并趨于穩(wěn)定.分析結(jié)果和實驗表明,設(shè)提出和講述概念的時間為(單位:分),學(xué)生的接受能力為 (值越大,表示接受能力越強),
(1)開講后多少分鐘,學(xué)生的接受能力最強?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大。唬3)若一個數(shù)學(xué)難題,需要56的接受能力以及12分鐘時間,老師能否及時在學(xué)生一直達到所需接受能力的狀態(tài)下講述完這個難題?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com