1.在△ABC中,已知A=45°,B=105°,則$\frac{a}{c}$的值為$\sqrt{2}$.

分析 由題意和內(nèi)角定理求出角C,根據(jù)正弦定理求出$\frac{a}{c}$的值.

解答 解:在△ABC中,∵A=45°,B=105°,∴C=180°-A-B=30°,
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,
則$\frac{a}{c}=\frac{sinA}{sinC}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\sqrt{2}$,
故答案為:$\sqrt{2}$.

點(diǎn)評 本題考查正弦定理的簡單應(yīng)用,以及內(nèi)角和定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2+xlnx(a∈R)的圖象在點(diǎn)(1,f(1))處的切線與直線x+3y=0垂直.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若存在k∈Z,使得f(x)>k恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.拋物線y2=2px(p>0)上一點(diǎn)M(2,m)到焦點(diǎn)的距離為3,則p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(1,0),且過點(diǎn)($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$).過F作直線l與橢圓C交于不同的兩點(diǎn)A,B,設(shè)$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],T(2,0)
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求|$\overrightarrow{TA}$+$\overrightarrow{TB}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x1、x2分別是關(guān)于x的方程x2+mx+m2-m=0的兩個不相等的實(shí)數(shù)根,那么過兩點(diǎn)A(x1,x12),B(x2,x22)的直線與圓(x-1)2+(y+1)2=1的位置關(guān)系是(  )
A.相離B.相切C.相交D.隨m的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=cos2xcosφ-sin2xsinφ(0<φ<$\frac{π}{2}$)的圖象的一個對稱中心為($\frac{π}{6}$,0),則下列說法不正確的是(  )
A.直線x=$\frac{5}{12}$π是函數(shù)f(x)的圖象的一條對稱軸
B.函數(shù)f(x)在[0,$\frac{π}{6}$]上單調(diào)遞減
C.函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位可得到y(tǒng)=cos2x的圖象
D.函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,點(diǎn)M(x0,y0)是橢圓C上的一點(diǎn),圓M(x-x02+(y-y02=r2
(1)若圓M與x軸相切于橢圓C的右焦點(diǎn),求圓M的方程;
(2)從原點(diǎn)O向圓M:(x-x02+(y-y02=$\frac{4}{5}$作兩條切線與橢圓C交于P,Q兩點(diǎn)(P,Q不在坐標(biāo)軸上),設(shè)OP,OQ的斜率分別為k1,k2
①試問k1,k2是否為定值?若是,求出這個定值;若不是說明理由;
②求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其離心率與雙曲線$\frac{x^2}{3}-{y^2}$=1的離心率互為倒數(shù),而直線x+y=$\sqrt{3}$過橢圓C的一個焦點(diǎn).
(I)求橢圓C的方程;
(Ⅱ)如圖,以橢圓C的左頂點(diǎn)T為圓心作圓T,設(shè)圓T與橢圓C交于兩點(diǎn)M,N,求$\overrightarrow{{T}{M}}•\overrightarrow{{T}{N}}$的最小值,并求出此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知sin($\frac{π}{3}$-θ)=$\frac{1}{2}$,則cos($\frac{π}{6}$+θ)=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案