某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的容積為立方米,且.假設該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為)千元.設該容器的建造費用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;

(Ⅱ)求該容器的建造費用最小時的

 

 

【答案】

 解析:(Ⅰ)由題意可知,即,則.

容器的建造費用為

,定義域為.

(Ⅱ),令,得.

(1)當時,,,函數(shù)為減函數(shù),當有最小值;

(2)當時,;當,

此時當有最小值。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為
80π3
立方米,且l≥2r.假設該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為c(c>3)千元.設該容器的建造費用為y千元.
(Ⅰ)寫出y關(guān)于r的函數(shù)表達式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費用最小時的r.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖南省四校高三上學期第三次聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元,設該容器的建造費用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;

(Ⅱ)求該容器的建造費用最小時的

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年新課標高三上學期單元測試數(shù)學 題型:解答題

(12分)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為.設該容器的建造費用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;

(Ⅱ)求該容器的建造費用最小時的.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考試題數(shù)學文(山東卷)解析版 題型:解答題

 

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元.設該容器的建造費用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;

(Ⅱ)求該容器的建造費用最小時的.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考試題數(shù)學文2(山東卷)解析版 題型:解答題

 

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為.設該容器的建造費用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;

(Ⅱ)求該容器的建造費用最小時的.

 

 

查看答案和解析>>

同步練習冊答案