【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線(xiàn)y=﹣1相鄰兩個(gè)交點(diǎn)的距離為π,若f(x)>1對(duì)x∈(﹣ , )恒成立,則φ的取值范圍是(
A.
B.
C.
D.

【答案】D
【解析】解:函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線(xiàn)y=﹣1相鄰兩個(gè)交點(diǎn)的距離為π,

故函數(shù)的周期為 =π,∴ω=2,f(x)=2sin(2x+φ)+1.

若f(x)>1對(duì)x∈(﹣ , )恒成立,即當(dāng)x∈(﹣ , )時(shí),sin(2x+φ)>0恒成立,

故有2kπ<2(﹣ )+φ<2 +φ<2kπ+π,求得2kπ+ φ<2kπ+ ,k∈Z,

結(jié)合所給的選項(xiàng),

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分別為邊AC,AB的中點(diǎn),點(diǎn)F,G分別為線(xiàn)段CD,BE的中點(diǎn).將△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.點(diǎn)Q為線(xiàn)段A1B上的一點(diǎn),如圖2.
(Ⅰ)求證:A1F⊥BE;
(Ⅱ)線(xiàn)段A1B上是否存在點(diǎn)Q使得FQ∥平面A1DE?若存在,求出A1Q的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)當(dāng) 時(shí),求直線(xiàn)GQ與平面A1DE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且A=2C.
(1)若△ABC為銳角三角形,求 的取值范圍;
(2)若b=1,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程是 (t為參數(shù)).
(1)求曲線(xiàn)C的直角坐標(biāo)方程和直線(xiàn)l的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M為BC的中點(diǎn).
(1)若N是棱AE上的動(dòng)點(diǎn),求證:DE⊥MN;
(2)若平面ADE與平面ABC所成銳二面角為60°,求棱AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且ctanC= (acosB+bcosA).
(1)求角C;
(2)若c=2 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“拋物線(xiàn) 的準(zhǔn)線(xiàn)方程為 ”是“拋物線(xiàn) 的焦點(diǎn)與雙曲線(xiàn) 的焦點(diǎn)重合”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2x+a,g(x)=lnx﹣2x,如果存在 ,使得對(duì)任意的 ,都有f(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案