12.已知圓C:(x-a)2+(y-b)2=1,平面區(qū)域Ω:$\left\{\begin{array}{l}{x+y-7≤0}\\{x-y+3≥0}\\{y≥0}\end{array}\right.$,若圓心C∈Ω,且圓C與x軸相切,則a2+b2的最大值為( 。
A.5B.29C.37D.49

分析 畫(huà)出不等式組對(duì)應(yīng)的平面區(qū)域,利用圓C與x軸相切,得到b=1為定值,此時(shí)利用數(shù)形結(jié)合確定a的取值即可得到結(jié)果.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
圓心為(a,b),半徑為1.
∵圓心C∈Ω,且圓C與x軸相切,
∴b=1,
則a2+b2=a2+1,
∴要使a2+b2的取得最大值,則只需a最大即可,
由圖象可知當(dāng)圓心C位于B點(diǎn)時(shí),a取值最大,
由$\left\{\begin{array}{l}{y=1}\\{x+y-7=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=1}\end{array}\right.$,即B(6,1),
∴當(dāng)a=6,b=1時(shí),a2+b2=36+1=37,即最大值為37,
故選:C.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.正三棱錐的底面邊長(zhǎng)為a,側(cè)棱與底面所成的角為60°,求正三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.過(guò)拋物線L:x2=2py(p>0)的焦點(diǎn)F且斜率為$\frac{3}{4}$的直線與拋物線L在第一象限的交點(diǎn)為P,且|PF|=5
(1)求拋物線L的方程;
(2)設(shè)直線l:y=kx+m與拋物線L交于A(x1,y1),B(x2,y2)兩點(diǎn).
(ⅰ)若k=2,線段AB的垂直平分線分別交y軸和拋物線L于M,N兩點(diǎn),(M,N位于直線l兩側(cè)),當(dāng)四邊形AMBN為菱形時(shí),求直線l的方程;
(ⅱ)若直線l過(guò)點(diǎn),且交x軸于點(diǎn)C,且$\overrightarrow{CA}$=a$\overrightarrow{AF}$,$\overrightarrow{CB}$=b$\overrightarrow{BF}$,對(duì)任意的直線l,a+b是否為定值?若是,求出a+b的值,若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)a,b,m,n∈R,且a2+b2=3,ma+nb=3,則$\sqrt{{m}^{2}{+n}^{2}}$的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知集合S中的元素是正整數(shù),且滿(mǎn)足命題“如果x∈S,則(10-x)∈S”,回答下列問(wèn)題:
(1)試寫(xiě)出只有一個(gè)元素的S.
(2)試寫(xiě)出元素個(gè)數(shù)為2的全部S.
(3)滿(mǎn)足上述命題的集合S共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列說(shuō)法中正確的是( 。
A.命題“若a>b>0,則$\frac{1}{a}$<$\frac{1}$”的逆命題是真命題
B.命題p:?x∈R,x2-x+1>0,則¬p:?x0∈R,x02-x0+1<0
C.“a>1,b>1”是“ab>1”成立的充分條件
D.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果x服從正態(tài)分布N(1,σ2)(σ>0),若x在(0,1)內(nèi)取值的概率為0.4,則x在(0,2)內(nèi)取值的概率為0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.為第k位碼元,二元碼是通信中常用的碼,但在通信過(guò)程中有時(shí)會(huì)發(fā)生碼元錯(cuò)誤(即碼元由0變?yōu)?,或者由1變?yōu)?).
已知某種二元碼x1x2…x7的碼元滿(mǎn)足如下校驗(yàn)方程組:⊕$\left\{\begin{array}{l}{{x}_{4}⊕{x}_{5}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{2}⊕{x}_{3}⊕{x}_{6}⊕{x}_{7}=0}\\{{x}_{1}⊕{x}_{3}⊕{x}_{5}⊕{x}_{7}=0}\end{array}\right.$,其中運(yùn)算⊕定義為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
現(xiàn)已知一個(gè)這種二元碼在通信過(guò)程中僅在第k位發(fā)生碼元錯(cuò)誤后變成了1101101,那么利用上述校驗(yàn)方程組可判定k等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.二次函數(shù)y=ax2+(b-8)x-a-ab,當(dāng)-3<x<2時(shí),y>0,當(dāng)x<-3或x>2時(shí)y<0.
(1)求二次函數(shù)的解析式;
(2)求y=ax2+(b-8)x-a-ab在0≤x≤1時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知集合A={x|ax2-3x+2=0},其中a為常數(shù),且a∈R.
(1)若A中至少有一個(gè)元素,求a的取值范圍;
(2)若A中至多有一個(gè)元素,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案