方程:cos2x+4sinx=a有解,則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由cos2x+4sinx=a有解,可得a=-sin2x+4sinx+1=-(sinx-2)2+5,又sinx∈[-1,1],利用二次函數(shù)的單調(diào)性即可得出.
解答: 解:∵cos2x+4sinx=a有解,
∴a=-sin2x+4sinx+1
=-(sinx-2)2+5,
∵sinx∈[-1,1],
∴a∈[-4,4].
故答案為:[-4,4].
點(diǎn)評:本題考查了同角三角函數(shù)基本關(guān)系式、正弦函數(shù)的值域、二次函數(shù)的單調(diào)性,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某屆足球賽的計(jì)分規(guī)則是:勝一場得3分,平一場得1分,負(fù)一場得0分.某球隊(duì)參賽15場,積33分.若不考慮比賽順序,則該隊(duì)勝、平、負(fù)的情形有( 。┓N.
A、15B、11C、9D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合{4,2}與集合B={2,a2}相等,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)對一切實(shí)數(shù)x,y都有g(shù)(x+y)-g(y)-x(x+2y+1)成立,是g(x)=0,且f(x)=
g(x)-3x+3
x

(1)求g(0)的值;
(2)求f(x)的解析式;
(3)已知k∈R,設(shè)P:不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,Q:f(|2x-1|)+k
2
|2x-1|
-3k=0有三個不同的實(shí)數(shù)解,如果滿足P成立的k的集合記為A,滿足Q成立的k的集合記為B,求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P(x,y)滿足條件
x≤0
y≥0
y≤2x+2
,點(diǎn)Q(a,b)(a≤0,b≥0)滿足
OP
OQ
≤1恒成立,其中O是坐標(biāo)原點(diǎn),則Q點(diǎn)的軌跡所圍成圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在圓的直徑AB的延長線上任取一點(diǎn)C,過點(diǎn)C作圓的切線CD,切點(diǎn)為D,∠ACD的平分線交AD于點(diǎn)E,則∠CED
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意的x∈[-2,1]時(shí),不等式x2+2x-a≤0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0]
B、(-∞,3]
C、[0,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中拋物線y2=2x與直線y=x-4所圍成陰影部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:?x∈R,不等式ax2-2ax+3>0成立,
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)命題q:?x>-1,不等式x2+2x+2<a(x+1)成立,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案