已知橢圓上的點(diǎn)到其兩焦點(diǎn)距離之和為,且過點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標(biāo)原點(diǎn),斜率為的直線過橢圓的右焦點(diǎn),且與橢圓交于點(diǎn),,若,求△的面積.
(Ⅰ)(Ⅱ)1
【解析】
試題分析:(Ⅰ)由橢圓的定義及橢圓的幾何性質(zhì)易得, ,即可得其橢圓方程。(Ⅱ)設(shè)出直線方程,然后聯(lián)立,消掉y(或x)得到關(guān)于x的一元二次方程,再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系式。先求出再將、代入求得的值,由弦長公式求出,再用點(diǎn)到線的距離公式其點(diǎn)到直線的距離,此距離即為△底邊上的高。用三角形面積公式可求得△的面積。
試題解析:解(Ⅰ)依題意有,.
故橢圓方程為. 5分
(Ⅱ)因?yàn)橹本過右焦點(diǎn),設(shè)直線的方程為 .
聯(lián)立方程組
消去并整理得. (*)
故,.
.
又,即.
所以,可得,即 .
方程(*)可化為,由,可得.
原點(diǎn)到直線的距離.
所以. 13分
考點(diǎn):1橢圓的基礎(chǔ)知識;2直線與橢圓的位置關(guān)系;3弦長公式;4點(diǎn)到直線的距離。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn)在 軸上方),使為等腰三角形.
⑴求離心率的范圍;
⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
x2 |
a2 |
y2 |
b2 |
| ||
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)小題限時(shí)訓(xùn)練試卷(07)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com