已知函數(shù)f(x)=loga
x+1
x-1
,(a>0,且a≠1).
(1)求函數(shù)的定義域,并證明:f(x)=loga
x+1
x-1
在定義域上是奇函數(shù);
(2)對于x∈[2,4],f(x)=loga
x+1
x-1
>loga
m
(x-1)2(7-x)
恒成立,求m的取值范圍.
分析:(1)由
x+1
x-1
>0解得定義域,在定義域范圍內(nèi)考察f(-x)=-f(x)成立.
(2)根據(jù)對數(shù)的性質(zhì),轉(zhuǎn)化為真數(shù)大小關(guān)系恒成立,再利用分離參數(shù)法求m范圍.
解答:解。1)由
x+1
x-1
>0,解得x<-1或x>1,
∴函數(shù)的定義域為(-∞,-1)∪(1,+∞).
當x∈(-∞,-1)∪(1,+∞)時,f(-x)=loga
-x+1
-x-1
=loga
x-1
x+1
=-loga
x+1
x-1
=-f(x),
∴f(x)=loga
x+1
x-1
在定義域上是奇函數(shù).
(2)由x∈[2,4]時,f(x)=loga
x+1
x-1
>loga
m
(x-1)2(7-x)
恒成立,
①當a>1時,
x+1
x-1
m
(x-1)2(7-x)
對x∈[2,4]恒成立.
∴0<m<(x+1)(x-1)(7-x)在x∈[2,4]恒成立.
設(shè)g(x)=(x+1)(x-1)(7-x),x∈[2,4]
則g(x)=-x3+7x2+x-7,
g′(x)=-3x2+14x+1,
∴當x∈[2,4]時,g′(x)>0.
∴y=g(x)在區(qū)間[2,4]上是增函數(shù),g(x)min=g(2)=15.
∴0<m<15.
②當0<a<1時,由x∈[2,4]時,
f(x)=loga
x+1
x-1
>loga
m
(x-1)2(7-x)
恒成立
x+1
x-1
<loga
m
(x-1)2(7-x)
對x∈[2,4]恒成立.
∴m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立.
設(shè)g(x)=(x+1)(x-1)(7-x),x∈[2,4],
由①可知y=g(x)在區(qū)間[2,4]上是增函數(shù),
g(x)max=g(4)=45,∴m>45.
∴m的取值范圍是(0,15)∪(45,+∞).
點評:本題考查了函數(shù)奇偶性的判定,不等式恒成立問題,函數(shù)最值求解,考查運算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案