已知直線交拋物線于兩點.若該拋物線上存在點,使得為直角,則的取值范圍為___________.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2012-2013學年湖北省黃岡市高三下學期6月適應性考試理科數學試卷(解析版) 題型:解答題
已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知,求的值;
(3)直線交橢圓于兩不同點,在軸的射影分別為,,若點滿足,證明:點在橢圓上.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年湖北省黃岡市高三下學期6月適應性考試文科數學試卷(解析版) 題型:解答題
已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知,則
是否為定值?若是,求出其值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年湖北省黃岡市高三6月適應性考試理科A數學試卷(解析版) 題型:解答題
已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知,求的值;
(3)直線交橢圓于兩不同點,在軸的射影分別為,,若點滿足,證明:點在橢圓上.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年湖北省黃岡市高三6月適應性考試文科A數學試卷(解析版) 題型:解答題
已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知,則是否為定值?若是,求出其值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com