(選修4-1幾何證明選講)
如圖,D,E分別是AB,AC邊上的點,且不與頂點重合,已知AE=m,AC=n,AD,AB為方程x2-14x+mn=0的兩根
(1)證明:C,B,D,E四點共圓;
(2)若∠A=90°,m=4,n=6,求C,B,D,E四點所在圓的半徑.
分析:(I)根據(jù)圓內(nèi)接四邊形的判定定理,若C,B,D,E,須證∠ADE=∠ACB(外角等于相鄰內(nèi)角的對角),由已知證明△ADE∽△ACB后,根據(jù)對應(yīng)角相等得到答案.
(II)將m=4,n=6,代入可求出AD,AB,取CE的中點G,DB的中點F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點,連接DH.解直角三角形DFH可得半徑
解答:證明:(I)連接DE,根據(jù)題意在△ADE和△ACB中,
AD×AB=mn=AE×AC
AD
AC
=
AE
AB
.又∠DAE=∠CAB,
從而△ADE∽△ACB  
因此∠ADE=∠ACB
所以C,B,D,E四點共圓.
(Ⅱ)m=4,n=6時,方程x2-14x+mn=0的兩根為x1=2,x2=12.
故  AD=2,AB=12.
取CE的中點G,DB的中點F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點,連接DH.
因為C,B,D,E四點共圓,
所以C,B,D,E四點所在圓的圓心為H,半徑為DH.
由于∠A=90°,故GH∥AB,HF∥AC.
∴HF=AG=5,DF=
1
2
(12-2)=5.
故C,B,D,E四點所在圓的半徑為5
2
點評:本題考查的知識點是相似三角形的判定,圓內(nèi)接四邊形的判定定理,圓半徑的求法,熟練掌握圓內(nèi)接四邊形的判定定理,是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石家莊一模)選修4-1幾何證明選講
已知△ABC中AB=AC,D為△ABC外接圓劣弧,
AC
上的點(不與點A、C重合),延長BD至E,延長AD交BC的延長線于F.
(I)求證.∠CDF=∠EDF
(II)求證:AB•AC•DF=AD•FC•FB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧)(選修4-1幾何證明選講)
如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直于AB于F,連接AE,BE,證明:
(1)∠FEB=∠CEB;
(2)EF2=AD•BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(A)(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π
3
)=4
的距離的最小值是
5
2
5
2

(B)(選修4-5不等式選講)已知2x+y=1,x>0,y>0,則
x+2y
xy
的最小值是
9
9

(C)(選修4-1幾何證明選講)若直角△ABC的內(nèi)切圓與斜邊AB相切于點D,且AD=1,BD=2,則△ABC的面積為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•南京模擬)A.選修4-1幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC交于點D.
求證:ED2=EB•EC.
B.矩陣與變換
已知矩陣A=
2-1
-43
4-1
-31
,求滿足AX=B的二階矩陣X.
C.選修4-4 參數(shù)方程與極坐標
若兩條曲線的極坐標方程分別為ρ=1與ρ=2cos(θ+
π
3
),它們相交于A,B兩點,求線段AB的長.
D.選修4-5 不等式證明選講設(shè)a,b,c為正實數(shù),求證:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

同步練習冊答案