若函數(shù)f(x)=ax3-2x2+a2x在x=1處有極小值,則實數(shù)a等于
1
1
分析:由f(x)=ax3-2x2+a2x,知f′(x)=3ax2-4x+a2,由f(x)在x=1處取得極小值,知f′(1)=3a-4+a2=0,由此能求出a.
解答:解:∵f(x)=ax3-2x2+a2x,
∴f′(x)=3ax2-4x+a2,
∵f(x)=ax3-2x2+a2x在x=1處取得極小值,
∴f′(1)=3a-4+a2=0,
解得a=1或a=-4,
經(jīng)驗證只有a=1符合在x=1處取得極小值,
所以a=1.
故答案為:1
點評:本題考查函數(shù)的導數(shù)的求法,是基礎題.解題時要認真審題,仔細解答.易錯點是容易產(chǎn)生增根.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

①命題“對任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函數(shù)f(x)=2x-x2的零點有2個;
③若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實數(shù)a=0;
④函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
x
-x
sinxdx;
⑤若函數(shù)f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為(1,8).
其中真命題的序號是
①③
①③
(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
(1)設f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說明原因;
(2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)記為y=g(x),g(16)=2,則f(
12
)
=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax-2+2010(a>0且a≠1)恒過一定點,此定點坐標為
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•盧灣區(qū)一模)若函數(shù)f(x)=ax+b的零點為x=2,則函數(shù)g(x)=bx2-ax的零點是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步練習冊答案