【題目】設(shè)命題p:函數(shù)fx=lgx2+ax+1)的定義域?yàn)?/span>R;命題q:函數(shù)fx=x2﹣2ax﹣1在(﹣∞,﹣1]上單調(diào)遞減.

1)若命題“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍;

2)若關(guān)于x的不等式(x﹣m)(x﹣m+5)<0m∈R)的解集為M;命題p為真命題時(shí),a的取值集合為N.當(dāng)M∪N=M時(shí),求實(shí)數(shù)m的取值范圍.

【答案】1﹣2a﹣1a≥2.(22≤m≤3

【解析】

試題(1)先分別求出p真,q真時(shí)的x的范圍,再通過(guò)討論pq假或pq真的情況,從而求出a的范圍;(2)根據(jù)M、N的關(guān)系,得到不等式組,解出即可.

解:(1)若p真:即函數(shù)fx)的定義域?yàn)?/span>R

∴x2+ax+10對(duì)x∈R恒成立,

∴△=a2﹣40,解得:﹣2a2,

q真,則a≥﹣1,

命題“p∨q”為真,“p∧q”為假∴pq假或pq

,解得:﹣2a﹣1a≥2

2∵M(jìn)∪N=M∴NM

∵M(jìn)=m﹣5,m),N=﹣2,2

,解得:2≤m≤3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,記過(guò)點(diǎn)A(x1,f(x1))和B(x2,f(x2))的直線斜率為k,若0<k≤2e,則實(shí)數(shù)m的取值范圍為( 。

A. B. (e,2e] C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),,直線的參數(shù)方程為 為參數(shù)).

1)若相交,求實(shí)數(shù)的取值范圍;

2)若,設(shè)點(diǎn)在曲線上,求點(diǎn)的距離的最大值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,的中點(diǎn).

1)求證:平面;

2)求證:平面平面.(只需在下面橫線上填寫(xiě)給出的如下結(jié)論的序號(hào):①平面,②平面,③,④,⑤

證明:(1)設(shè),連接.因?yàn)榈酌?/span>是正方形,所以的中點(diǎn),又的中點(diǎn),所以_________.因?yàn)?/span>平面,____________,所以平面.

2)因?yàn)?/span>平面平面,所以___________,因?yàn)榈酌?/span>是正方形,所以_______,又因?yàn)?/span>平面平面,所以_________.平面,所以平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高一年級(jí)共8個(gè)班,現(xiàn)從高一年級(jí)選10名同學(xué)組成社區(qū)服務(wù)小組,其中高一(1)班選取3名同學(xué),其它各班各選取1名同學(xué).現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到社區(qū)老年中心參加尊老愛(ài)老活動(dòng)(每位同學(xué)被選到的可能性相同).

1)求選出的3名同學(xué)來(lái)自不同班級(jí)的概率;

2)設(shè)X為選出同學(xué)中高一(1)班同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;

(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[50,90)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)設(shè)函數(shù),討論函數(shù)在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù);

2)若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

2

0

0

(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫(xiě)在相應(yīng)位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)為橢圓的右焦點(diǎn),點(diǎn)在橢圓上,已知橢圓的離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過(guò)右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),記三條邊所在直線的斜率的乘積為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案