6.已知函數(shù)$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)單調(diào)遞減區(qū)間;
(2)已知△ABC中,滿足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范圍.

分析 (1)化簡函數(shù)f(x)為正弦型函數(shù),根據(jù)正弦函數(shù)的單調(diào)性求出f(x)的單調(diào)減區(qū)間;
(2)利用正弦定理求出A的取值范圍,再求f(A)的取值范圍即可.

解答 解:(1)$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$
=$\frac{1}{2}$-$\frac{1+cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x
=sin(2x-$\frac{π}{6}$),
令$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z,
解得$\frac{π}{3}$+kπ≤x≤$\frac{5π}{6}$+kπ,k∈Z;
∴f(x)的單調(diào)遞減區(qū)間是$[\frac{π}{3}+kπ,\frac{5π}{6}+kπ],k∈Z$;…(6分)
(2)△ABC中,滿足sin2B+sin2C>sinBsinC+sin2A,
∴b2+c2>bc+a2
即b2+c2-a2>bc,
∴cosA=$\frac{^{2}{+c}^{2}{-a}^{2}}{2bc}$>$\frac{1}{2}$,
∴0<A<$\frac{π}{3}$;
∴-$\frac{π}{6}$<2A-$\frac{π}{6}$<$\frac{π}{2}$,
∴-$\frac{1}{2}$<sin(2A-$\frac{π}{6}$)<1,
∴f(A)的取值范圍是(-$\frac{1}{2}$,1).…(12分)

點評 本題考查了三角函數(shù)的化簡以及正弦定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,P-ABCD是棱長均為1的正四棱錐,頂點P在平面ABCD內(nèi)的正投影為點E,點E在平面PAB內(nèi)的正投影為點F,則 tan∠PEF=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,輸出S的值為( 。
A.45B.55C.66D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={1,2,3},B={2,3},則( 。
A.A∩B=∅B.AB=BC.A⊆BD.B$\begin{array}{l}?\\≠\end{array}$A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過雙曲線$\frac{x^2}{3}-{y^2}=1$右焦點的直線l被圓x2+(y+2)2=9截得弦長最長時,則直線l的方程為( 。
A.x-y+2=0B.x+y-2=0C.x-y-2=0D.x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系中,以原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4.
(1)若l的參數(shù)方程中的$t=-\sqrt{2}$時,得到M點,求M的極坐標(biāo)和曲線C直角坐標(biāo)方程;
(2)若點P(0,2),l和曲線C交于A,B兩點,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=|lnx|,若在區(qū)間$[\frac{1}{3},3]$內(nèi),曲線g(x)=f(x)-ax與x軸有三個不同的交點,則實數(shù)a的取值范圍是( 。
A.$[\frac{ln3}{3},\frac{1}{e})$B.$[\frac{ln3}{3},\frac{1}{2e})$C.$(0,\frac{1}{e})$D.$(0,\frac{1}{2e})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“4<K<9”是“方程$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{k-4}$=1表示的圖形為橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C以原點為中心,左焦點F的坐標(biāo)是(-1,0),長軸長是短軸長的$\sqrt{2}$倍,直線l與橢圓C交于點A與B,且A、B都在x軸上方,滿足∠OFA+∠OFB=180°;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)對于動直線l,是否存在一個定點,無論∠OFA如何變化,直線l總經(jīng)過此定點?若存在,求出該定點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案