已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為,離心率為
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線、兩點(diǎn),試問(wèn):在軸上是否存在一個(gè)定點(diǎn),使為定值?若存在,求出這個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)(2)符合條件的點(diǎn)存在,其坐標(biāo)為
(1)設(shè)橢圓的方程為,由已知得 ,,
橢圓的方程為 .
(2)法一:假設(shè)存在符合條件的點(diǎn),又設(shè),則:

 
①當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為:,則由,
,即,
,

所以 ,
對(duì)于任意的值,為定值,所以,得,
所以;
②當(dāng)直線的斜率不存在時(shí),直線,由
綜上述①②知,符合條件的點(diǎn)存在,起坐標(biāo)為
法二:假設(shè)存在符合條件的點(diǎn),又設(shè)則:
,
=
①當(dāng)直線的斜率不為時(shí),設(shè)直線的方程為,由,得,
,



設(shè)

,,
②當(dāng)直線的斜率為時(shí),直線,由得:

綜上述①②知,符合條件的點(diǎn)存在,其坐標(biāo)為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:在△ABC中,=, =,求,的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,F(xiàn)是定直線l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線與圓

C過(guò)F的切線交于點(diǎn)P和點(diǎn)Q,則P、Q必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:
“若過(guò)拋物線焦點(diǎn)F的直線與拋物線交于P、Q兩點(diǎn),
則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請(qǐng)
問(wèn):此命題是否正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并
證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為評(píng)分依據(jù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知以點(diǎn)為圓心的圓與軸交于點(diǎn),與軸交于點(diǎn)、,其中為原點(diǎn)。
(Ⅰ)求的面積;
(Ⅱ)設(shè)直線與圓交于點(diǎn),若,求圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,內(nèi)有一動(dòng)點(diǎn)PM,N,且四邊形PMON的面積等于4,今以O為原點(diǎn),的平分線為極軸(如圖),求動(dòng)點(diǎn)P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓與雙曲線有相同的焦點(diǎn),且橢圓過(guò)點(diǎn),
(1)求橢圓方程; 
(2)直線過(guò)點(diǎn)交橢圓于兩點(diǎn),且,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),曲線有4個(gè)不同的交點(diǎn).
(1)求的取值范圍;
(2)證明這4個(gè)次點(diǎn)共圓,并求圓半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P在直線x+2y-1=0上,點(diǎn)Q在直線x+2y+3=0上,PQ中點(diǎn)為M(x0,y0),且y0>x0+2,則的取值范圍為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

:如圖所示,ACAB分別是圓O的切線,B、C為切點(diǎn),OC = 3,AB = 4,延長(zhǎng)OAD點(diǎn),則△ABD的面積是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案