設(shè)函數(shù)f(x)=x(lnx+a)-ax2,其中a∈R.
(1)若a=0,求f(x)的單調(diào)區(qū)間及極值;
(2)當(dāng)x≥1時,f(x)≤0,求a的取值范圍.

解:(1)當(dāng)a=0時,f(x)=xlnx
∴f'(x)=lnx+1,x∈(0,+∞)
又∵當(dāng)x∈(0,)時,f'(x)<0,
當(dāng)x∈(,+∞)時,f'(x)>0,
∴f(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增,在x=處取得極大值,且極大值為f()=-
(2)當(dāng)x≥1時,f(x)≤0?lnx+a-ax≤0.
令g(x)=lnx+a-ax,則
①當(dāng)a≥1時,g'(x)≤0,故g(x)
在[1,+∞)是減函數(shù),所以g(x)≤g(1)=0.
②當(dāng)0<a<1時,令g'(x)=0,得
∵當(dāng)時,g'(x)>0,
故當(dāng)時,g(x)>g(1)=0,與題意不符.
③當(dāng)a≤0時,g'(x)>0,故g(x)在[1,+∞)是增函數(shù),從而當(dāng)x∈(1,+∞)時,
有g(shù)(x)>g(1)=0,與題意不符.綜上所述,a的取值范圍為[1,+∞).
分析:(1)由原函數(shù)的解析式,我們易求出函數(shù)的導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)函數(shù)的零點(diǎn)對函數(shù)的定義域進(jìn)行分段討論后,即可得到答案.
(2)若f(x)≤0,即x(lnx+a)-ax2≤0,對a進(jìn)行分類討論后,綜合即可得到答案.
點(diǎn)評:本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,及函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,其中根據(jù)已知條件求出導(dǎo)函數(shù)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是( 。
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案