(2012•杭州一模)函數(shù)f(x)在定義域R內(nèi)可導,若f(x)=f(2-x),且(x-1)f′(x)<0,若a=f(0),b=f(
1
2
),c=f(3),則a,b,c的大小關(guān)系是( 。
分析:先根據(jù)題中條件:“f(x)=f(2-x),”求其對稱軸,再利用導數(shù)的符號判斷函數(shù)的單調(diào)性,進而可解.
解答:解:由f(x)=f(2-x)可知,f(x)的圖象關(guān)于x=1對稱,
根據(jù)題意又知x∈(-∞,1)時,f'(x)>0,此時f(x)為增函數(shù),
x∈(1,+∞)時,f'(x)<0,f(x)為減函數(shù),
所以f(3)=f(-1)<f(0)<f( 
1
2
),即c<a<b,
故選C.
點評:本題的考點是函數(shù)的單調(diào)性與導數(shù)的關(guān)系,主要考查函數(shù)的單調(diào)性與其導函數(shù)的正負之間的關(guān)系.解答關(guān)鍵是利用導數(shù)工具判斷函數(shù)的單調(diào)性,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•杭州一模)已知x>1,則函數(shù)f(x)=x+
1
x-1
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•杭州一模)在數(shù)列{an}中,a1=1,當n≥2時,其前n項和Sn滿足Sn2=an(Sn-
1
2
)

(1)求an
(2)令bn=
Sn
2n+1
,求數(shù)列{bn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•杭州一模)在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2cos(B-C)=4sinB•sinC-1.
(1)求A;
(2)若a=3,sin
B
2
=
1
3
,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•杭州一模)2011年11月9日,《杭州市公共租賃住房建設(shè)租賃管理暫行辦法》公布.《辦法》規(guī)定:每位申請人根據(jù)意愿,只能選擇申請一個片區(qū)的公租房.假定申請任一個片區(qū)的公租房都是等可能的.杭州市公租房主要分布在“江干、西湖、下沙”三大片區(qū).現(xiàn)有4位申請人甲、乙、丙、丁欲申請公租房,試求:
(Ⅰ)沒有人申請“下沙”片區(qū)的概率;
(Ⅱ)“江干、西湖、下沙”三大片區(qū)均有人申請的概率.

查看答案和解析>>

同步練習冊答案