(湖南長(zhǎng)郡中學(xué)模擬)如下圖,在底面是矩形的四棱錐PABCD中,PA⊥面ABCD,PA=AB=1BC=2

(1)求證:平面PDC⊥平面PAD;

(2)EPD的中點(diǎn),求異面直線AEPC所成角的余弦值;

(3)BC上是否存在一點(diǎn)G,使得D到平面PAG的距離為1?若存在,求出BG;若不存在,請(qǐng)說明理由.

答案:略
解析:

解析:以A為原點(diǎn),AB所在直線為x軸,AD所在直線為y軸,AP所在直線為z軸建系,

A(0,0,0),B(10,0),C(1,20),D(02,0),P(0,0,1)

,,,

(1)易證得CDAD,CDAP

CD⊥平面平面PDC⊥平面PAD.         (4)

(2),

所以所求角的余弦值為.                (8)

(3)假設(shè)存在,設(shè)BG=x,則G=(1x,0),作DQAG,則DQ⊥平面PAG

DG=1,∵,

故存在點(diǎn)G,當(dāng)時(shí),D到平面PAG的距離為1.   (12)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:022

(湖南長(zhǎng)郡中學(xué)模擬)已知、分別為雙曲線的左、右焦點(diǎn),P是雙曲線左支上的一點(diǎn),若,則雙曲線的離心率取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:022

(湖南長(zhǎng)郡中學(xué)模擬)過直線ly=x+9上的一點(diǎn)P作一個(gè)長(zhǎng)軸最短的橢圓,使其焦點(diǎn)為(3,0),(3,0),則橢圓的方程為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

(湖南長(zhǎng)郡中學(xué)模擬)已知雙曲線G的中心在原點(diǎn),它的漸近線與圓相切.過點(diǎn)P(4,0)作斜率為的直線l,使得lG交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足

(1)求雙曲線G的漸近線方程;

(2)求雙曲線G的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

(湖南長(zhǎng)郡中學(xué)模擬)如下圖,以、為焦點(diǎn)的雙曲線E與半徑為c的圓O相交于C、D、,連接OB交于點(diǎn)H,且有,其中,B是圓O與坐標(biāo)軸的交點(diǎn),c為雙曲線的半焦距.

(1)當(dāng)c=1時(shí),求雙曲線E的方程;

(2)試證:對(duì)任意正實(shí)數(shù)c,雙曲線E的離心率為常數(shù);

(3)連接,與雙曲線E交于點(diǎn)F,是否存在實(shí)數(shù)λ,使恒成立?若存在,試求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

(湖南長(zhǎng)郡中學(xué)模擬)甲袋中裝有3個(gè)白球5個(gè)黑球,乙袋中裝有4個(gè)白球6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋,則甲袋中白球沒有減少的概率為

[  ]

A

B

C

D

查看答案和解析>>

同步練習(xí)冊(cè)答案