設(shè)3a=4b=36,求
2
a
+
1
b
的值.
考點:對數(shù)的運算性質(zhì),指數(shù)式與對數(shù)式的互化
專題:函數(shù)的性質(zhì)及應用
分析:對3a=4b=36取以6為底的對數(shù),得
2
a
=log63,
1
b
=log62,由此能求出結(jié)果.
解答: 解:∵3a=4b=36,
∴對3a=4b=36取以6為底的對數(shù),
2
a
=log63,
1
b
=log62,
2
a
+
1
b
=log63+log62=log66=1.
點評:本題考查兩數(shù)和的求法,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則y=f(x)與y=log5(x+2)的圖象的交點的個數(shù)為( 。
A、3個B、4個C、5個D、6個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-3x-a有3個不同零點,則實數(shù)a的取值范圍是( 。
A、(-2,2)
B、[-2,2]
C、(-∞,-1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=a2x2-3x+1,g(x)=ax2+2x-5(a>0且a≠1),確定x的取值范圍,使得f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lg(y-1)-lgy=lg(2y-2)-lg(y+2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=a2x2-3x+1,g(x)=ax2+2x-5,(a>0,a≠1)試確定x的取值范圍,使得f(x)≥g(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點的橢圓C的左焦點F(-
3
,0),右頂點A(2,0).
(1)求橢圓C的標準方程;
(2)斜率為
1
2
的直線l經(jīng)過點F且交橢圓C于A、B兩點,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:a,b是兩條異面直線,且a∥α,a∥β,b∥α,b∥β,求證:α∥β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項公式.
(2)若等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3,求{bn}的前n項和公式.

查看答案和解析>>

同步練習冊答案